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PERVERSE COHERENT SHEAVES AND FOURIER-MUKAI TRANSFORMS ON

SURFACES

KŌTA YOSHIOKA

Abstract. We study perverse coherent sheaves on the resolution of rational double points. As examples,
we consider rational double points on 2-dimensional moduli spaces of stable sheaves on K3 and elliptic
surfaces. Then we show that perverse coherent sheaves appears in the theory of Fourier-Mukai transforms.
As an application, we generalize the Fourier-Mukai duality for K3 surfaces to our situation.
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0. Introduction

Let π : X → Y be a birational map such that dim π−1(y) ≤ 1, y ∈ Y . Then Bridgeland [Br3] introduced
the abelian category p Per(X/Y )(⊂ D(X)) of perverse coherent sheaves in order to show that flops of smooth
3-folds preserves the derived categories of coherent sheaves. By using the moduli of perverse coherent sheaves
on X , Bridgeland constructed the flop X ′ → Y of X → Y . Then the Fourier-Mukai transform by the
universal family induces an equivalence D(X) ∼= D(X ′). In [VB], Van den Bergh showed that p Per(X/Y )
is Morita equivalent to the category CohA(Y ) of A-modules on Y and gave a different proof of Bridgeland
result, where A is a sheaf of (non-commutative) algebras over Y . Although the main examples of the
birational contraction are small contraction of 3-folds, 2-dimensional cases seem to be still interesting. In
[NY1], [NY2], Nakajima and the author studied perverse coherent sheaves for the blowing up X → Y of
a smooth surface Y at a point. In this case, by analysing wall-crossing phenomena, we related the moduli
of stable perverse coherent sheaves to the moduli of usual stable sheaves. Next example is the minimal
resolution of a rational double point. Let G be a finite subgroup of SU(2) acting on C2 and set Y := C2/G.
Let π : X → Y be the resolution of Y . Then the relation between the perverse coherent sheaves and the
usual coherent sheaves on X are discussed by Nakajima. Their moduli spaces are constructed as Nakajima’s
quiver varieties [N1] and their differences are described by the wall crossing phenomena [N2]. Toda [T] also
treated special cases. In this paper, we are interested in the global case. Thus we consider the minimal
resolution π : X → Y of a normal projective surface Y with rational double points as singuralities.

As examples, we shall show that perverse coherent sheaves naturally appear if we consider the Fourier-
Mukai transforms on K3 and elliptic surfaces. In our previous paper [Y5], we studied Fourier-Mukai trans-
forms defined by the moduli spaces of (semi)-stable sheaves Y ′ on X . Our assumption is the genericity of
the polarization. If the polarization is not general, then Y ′ is singular at properly semi-stable sheaves. In
this case, we still have the Fourier-Mukai transform by using the resolution X ′ of Y ′. Then the category
of perverse coherent sheaves on X ′ naturally appears. In particular, we show that the universal family on
X ′ ×X is the universal family of stable perverse coherent sheaves on X ′ (Theorem 3.6.1). Thus we have a
kind of duality between X and X ′, which is a generalization of the relation between an abelian variety and
its dual. We call this kind of duality Fourier-Mukai duality. The Fourier-Mukai duality for a K3 surface
was studied by Bartocci, Bruzzo, Hernández Ruipérez [BBH], Mukai [Mu3], Orlov [O], Bridgeland [Br2],
and was first proved by Huybrechts in [H] under the genericity of the polarization. He also proved that the
Fourier-Mukai transform preserves nice abelian subcategories. We also give a generalization of this result
(Theorem 3.5.8). Then we can generalize the result on the preservation of stability by the Fourier-Mukai
transform in [Y5] to our situation.

For the relative Fourier-Mukai transforms on elliptic surfaces, we also get similar results. Let G be a finite
group acting on a projective surface X . Assume that KX is the pull-back of a line bundle on Y := X/G.
Then the McKay correspondence [VB] implies that CohG(X) is equivalent to −1 Per(X ′/Y ), where X ′ → Y
is the minimal resolution of Y . The equivalence is given by a Fourier-Mukai transform associated to a moduli
space of stable G-sheaves of dimension 0. If X is a K3 surface or an abelian surface, then we have many
2-dimensional moduli spaces of stable G-sheaves. We also treat the Fourier-Mukai transform induced by the
moduli of G-sheaves.

In section 1, we consider an abelian subcategory C of D(X) which is Morita equivalent to CohA(Y ), where
π : X → Y be a birational contraction from a smooth variety X and A is a sheaf of (non-commutative)
algebras over Y . We call an object of C a perverse coherent sheaf. Since −1Per(X/Y ) is Morita equivalent
to CohA(Y ) for an algebra A [VB], our definition is compatible with Bridgeland’s definition. We also
study irreducible objects and local projective generators of C. As examples, we shall give generalizations
of p Per(X/Y ), p = −1, 0. We next explain families of perverse coherent sheaves and the relative version
of Morita equivalence. Then we can use Simpson’s moduli spaces of stable A-modules [S] to construct the
moduli spaces of stable perverse coherent sheaves. Since Simpson’s stability is not good enough for the
0-dimensionional objects, we also introduce a refinement of the stability and construct the moduli space,
which is close to King’s stability [K].

In section 2, we study perverse coherent sheaves on the resolution of rational double points. We first
introduce two kind of categories Per(X/Y,b1, . . . ,bn) and Per(X/Y,b1, . . . ,bn)

∗ associated to a sequence
of line bundles on the exceptional curves of the resolution of rational singularities and show that they are
the category of perverse coherent sheaves in the sense in section 1. They are generalizations of −1 Per(X/Y )
and 0 Per(X/Y ) respectively.

We next study the moduli of 0-dimensional objects on the resolution of rational double points. We
introduce the wall and the chamber structure and study the Fourier-Mukai transforms induced by the
moduli spaces. Under a suitable stability condition for Cx, x ∈ X , we show that the category of perverse
coherent sheaves is equivalent to −1 Per(X/Y ) (cf. Proposition 2.4.7). We also construct local projective
generators under suitable conditions.
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In section 3, we consider the Fourier-Mukai transforms on K3 surfaces. We generalize known facts on
the 2-dimensional moduli spaces of usual stable sheaves to those of stable objects. Then we define similar
categories A and Aµ to those in [Br4], and generalize results in [H]. In particular, we study the relation
of Fourier-Mukai transforms and the categories A,Aµ (Theorem 3.5.8). This result will be used to study
Bridgeland’s stable objects in [MYY]. We also prove the Fourier-Mukai duality (Theorem 3.6.1). Finally
we give some conditions for the preservation of Gieseker stability conditions. Fourier-Mukai transforms on
elliptic surfaces and Fourier-Mukai transforms by equivariant coherent sheaves are treated in sections 4 and
5.

Notation.

(i) For a scheme X , Coh(X) denotes the category of coherent sheaves on X and D(X) the bounded
derived category of Coh(X). We denote the Grothendieck group of X by K(X).

(ii) Let A be a sheaf of OX -algebras on a scheme X which is coherent as an OX -module. Let CohA(X)
be the category of coherentA-modules onX andDA(X) the bounded derived category of CohA(X).

(iii) Assume thatX is a smooth projective variety. LetE be an object ofD(X). E∨ := RHomOX
(E,OX)

denotes the dual of E. We denote the rank of E by rkE. For a fixed nef divisor H on X , deg(E)
denotes the degree of E with respect to H . For G ∈ K(X), rkG > 0, we also define the twisted
rank and degree by rkG(E) := rk(G∨ ⊗ E) and degG(E) := deg(G∨ ⊗ E) respectively. We set
µG(E) := degG(E)/ rkG(E), if rkE 6= 0.

(iv) Integral functor. For two schemes X , Y and an object E ∈ D(X × Y ), ΦE
X→Y : D(X)→ D(Y )

is the integral functor

(0.1) ΦE
X→Y (E) := RpY ∗(E

L

⊗ p∗X(E)), E ∈ D(X),

where pX : X × Y → X and pY : X × Y → Y are projections. If ΦE
X→Y is an equivalence, it is said

to be the Fourier-Mukai transform.
(v) D(X)op denotes the opposit category of D(X). We have a functor

DX : D(X) → D(X)op
E 7→ E∨.

(vi) Assume X is a smooth projective surface.

(a) We set Hev(X,Z) :=
⊕2

i=0H
2i(X,Z). In order to describe the element x of Hev(X,Z), we use

two kinds of expressions: x = (x0, x1, x2) = x0+x1+x2̺X , where x0 ∈ Z, x1 ∈ H2(X,Z), x2 ∈
Z, and

∫
X
̺X = 1. For x = (x0, x1, x2), we set rkx := x0 and c1(x) = x1.

(b) We define a homomorphism

(0.2)
γ : K(X) → Z⊕NS(X)⊕ Z

E 7→ (rkE, c1(E), χ(E))

and set K(X)top := K(X)/ kerγ. We denote E mod kerγ by τ(E). K(X)top has a bilinear
form χ( , ).

(c) Mukai lattice. We define a lattice structure 〈 , 〉 on Hev(X,Z) by

〈x, y〉 :=−
∫

X

x∨ ∪ y

=(x1, y1)− (x0y2 + x2y0),

(0.3)

where x = (x0, x1, x2) (resp. y = (y0, y1, y2)) and x∨ = (x0,−x1, x2). It is now called
the Mukai lattice. Mukai lattice has a weight-2 Hodge structure such that the (p, q)-part
is
⊕

iH
p+i,q+i(X). We set

Hev(X,Z)alg =H1,1(Hev(X,C)) ∩Hev(X,Z)

∼=Z⊕NS(X)⊕ Z.
(0.4)

Let E be an object of D(X). If X is a K3 surface or rkE = 0, we define the Mukai vector of
E as

v(E) := rk(E) + c1(E) + (χ(E)− rk(E))̺X ∈ Hev(X,Z).(0.5)

Then for E,F ∈ D(X) such that the Mukai vectors are well-defined, we have

(0.6) χ(E,F ) = −〈v(E), v(F )〉.
(d) Since degG(E) is determined by the Chern character ch(E), we can also define degG(v), v ∈

Hev(X,Z)alg by using E ∈ D(X) with v(E) = v.
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1. Perverse coherent sheaves and their moduli spaces.

1.1. Tilting and Morita equivalence. Let X be a smooth projective variety and π : X → Y a birational
map. Let OY (1) be an ample line bundle on Y and OX(1) := π∗(OY (1)). We are interested in a subcategory
C of D(X) such that

(i) C is the heart of a bounded t-structure of D(X).
(ii) There is a local projective generator G of C [VB]:

(a) Rπ∗RHom(G,E) ∈ Coh(Y ) for all E ∈ C and
(b) Rπ∗RHom(G,E) = 0, E ∈ C if and only if E = 0.

By these properties, we get

(1.1) C = {E ∈ D(X)|Rπ∗RHom(G,E) ∈ Coh(Y )}.
Definition 1.1.1. (1) A perverse coherent sheaf E is an object of C. C is the category of perverse

coherent sheaves.
(2) For E ∈ D(X), pHi(E) ∈ C denotes the i-th cohomology object of E with respect to the t-structure.

The following is an easy consequence of the properties (a), (b) of G. For a convenience sake, we give a
proof.

Lemma 1.1.2. Let G be a local projective generator of C.
(1) For E ∈ C, there is a locally free sheaf V on Y and a surjective morphism

(1.2) φ : π∗(V )⊗G→ E

in C. In particular, we have a resolution

(1.3) · · · → π∗(V−1)⊗G→ π∗(V0)⊗G→ E → 0

of E such that Vi, i ≤ 0 are locally free sheaves on Y .
(2) Let G′ ∈ C be a local projective object of C: Rπ∗RHom(G′, E) ∈ Coh(Y ) for all E ∈ C. If G is a

locally free sheaf, then G′ is also a locally free sheaf

Proof. (1) By the property (a) of G, we can take a morphism ϕ : V → Rπ∗RHom(G,E) in D(Y ) such that
V → H0(Rπ∗RHom(G,E)) is surjective in Coh(Y ). Since

Hom(Lπ∗(Rπ∗RHom(G,E)) ⊗G,E) =Hom(Lπ∗(Rπ∗RHom(G,E)),RHom(G,E))

=Hom(Rπ∗RHom(G,E),Rπ∗RHom(G,E)),
(1.4)

we have a morphism φ : π∗(V )⊗G→ E such that the induced morphism V → Rπ∗RHom(G, π∗(V )⊗G)→
Rπ∗RHom(G,E) is ϕ. Then cokerφ ∈ C satisfies Rπ∗RHom(G, cokerφ) = 0. By our assumption on G,
cokerφ = 0. Thus φ is surjective in C.

(2) We take a surjective homomorphism (1.2) for G′. Let U be an affine open subset of Y . We note that

(1.5) Hom(G′
|π−1(U), kerφ|π−1(U)[1]) = H1(U,Rπ∗RHom(G′

|π−1(U), kerφ|π−1(U))) = 0.

Hence

(1.6) Hom(G′
|π−1(U), π

∗(V )⊗G|π−1(U))→ Hom(G′
|π−1(U), G

′
|π−1(U))

is surjective. Therefore G′
|π−1(U) is a direct summand of π∗(V )⊗G|π−1(U). �

From now on, we assume the following:

• G is a local projective generator of C which is a locally free sheaf.

Proposition 1.1.3. ([VB, Lem. 3.2, Cor. 3.2.8]) We set A := π∗(G
∨ ⊗G). Then we have an equivalence

(1.7)
C → CohA(Y )
E 7→ Rπ∗(G

∨ ⊗ E)

whose inverse is F 7→ π−1(F )
L

⊗π−1(A)G. Moreover this equivalence induces an equivalence D(X)→ DA(Y ).

LetOY (1) be an ample line bundle on Y . For F ∈ CohA(Y ), we have a surjective morphismH0(Y, F (n))⊗
A(−n) → F , n ≫ 0. Hence we have a resolution V • → F by locally free A-modules V i. If V i|U

∼= A⊕n
U on

an open subset of Y , then (π−1(V i)⊗π−1(A)G)|π−1(U)
∼= G⊕n

|π−1(U). Thus π
−1(F )

L

⊗π−1(A)G is isomorphic to

π−1(V •)⊗π−1(A) G.

Assumption 1.1.4. From now on, we assume that dimπ−1(y) ≤ 1 for all y ∈ Y and set

(1.8) Yπ := {y ∈ Y | dimπ−1(y) = 1}.
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Lemma 1.1.5. Assume that dim π−1(y) ≤ 1 for all y ∈ Y . Let G be a locally free sheaf on X and set

T :={E ∈ Coh(X)|R1π∗(G
∨ ⊗ E) = 0},

S :={E ∈ Coh(X)|π∗(G∨ ⊗ E) = 0}.
(1.9)

(1) (T, S) is a torsion pair of Coh(X) such that G ∈ T if and only if R1π∗(G
∨⊗G) = 0 and S∩T = 0.

(2) If (T, S) is a torsion pair such that G ∈ T , then G is a local projective generator of the tilted category

(1.10) CG := {E ∈ D(X)|H−1(E) ∈ S,H0(E) ∈ T, Hi(E) = 0, i 6= −1, 0}.
(3) Assume that (T, S) is a torsion pair such that G ∈ T . If (T ′, S′) is a torsion pair of Coh(X) such

that G ∈ T ′ and S ∩ T ′ = 0, then (T ′, S′) = (T, S).

Proof. (1) We shall prove that (T, S) is a torsion pair under R1π∗(G
∨ ⊗ G) = 0 and S ∩ T = 0. For

E ∈ Coh(X), let φ : π∗(π∗(G
∨⊗E))⊗G→ E be the evaluation map. Then we see that π∗(G

∨⊗cokerφ) = 0,
R1π∗(G

∨ ⊗ imφ) = 0 and R1π∗(G
∨ ⊗ E) ∼= R1π∗(G

∨ ⊗ cokerφ). Hence we have a desired decomposition

(1.11) 0→ E1 → E → E2 → 0

where E1 := imφ ∈ T and E2 := cokerφ ∈ S.
(2) If (T, S) is a torsion pair, then for E ∈ CG, we have an exact sequence

(1.12) 0→ R1π∗(G
∨ ⊗H−1(E))→ Rπ∗(G

∨ ⊗ E)→ π∗(G
∨ ⊗H0(E))→ 0.

Hence Rπ∗(G
∨⊗E) ∈ Coh(Y ) and Rπ∗(G

∨⊗E) = 0 if and only if R1π∗(G
∨⊗H−1(E)) = π∗(G

∨⊗E) = 0,
which is equivalent to H−1(E), H0(E) ∈ S ∩ T = 0. Therefore G is a local projective generator of CG.

(3) We first prove that T ⊂ T ′. For an object E ∈ T , (2) implies that there is a surjective morphism
φ : π∗(V )⊗G→ E in CG, where V is a locally free sheaf on Y . Since φ is surjective in Coh(X) and G ∈ T ′,
E ∈ T ′. Since S ∩ T ′ = 0, we get S ⊂ S′. Therefore (T ′, S′) = (T, S). �

By the proof of Lemma 1.1.5, we get the following.

Corollary 1.1.6. Let G be a locally free sheaf on X which gives a local projective generator of CG in Lemma
1.1.5. Let E be a coherent sheaf on X and φ : π∗(π∗(G

∨ ⊗ E)) ⊗ G → E the evaluation map. Then
E1 := imφ ∈ T and E2 := cokerφ ∈ S. Thus we have a decomposition of E

(1.13) 0→ im φ→ E → cokerφ→ 0

with respect to the torsion pair (T, S).

Lemma 1.1.7. Assume that the local projective generator G ∈ C is a locally free sheaf. We set

T :={E ∈ Coh(X)|R1π∗(G
∨ ⊗ E) = 0},

S :={E ∈ Coh(X)|π∗(G∨ ⊗ E) = 0}.
(1.14)

Then (T, S) is a torsion pair of Coh(X) whose tilting is C.
Proof. Since G ∈ C, we have Rπ∗(G

∨ ⊗G) ∈ Coh(Y ). By the definition of a local projective generator, we
have S ∩ T = 0. By Lemma 1.1.5, (T, S) is a torsion pair. Let CG be the tilted category. Since S[1], T ⊂ C,
we get CG ⊂ C. Conversely for E ∈ C, we have a spectral sequence

(1.15) Ep,q2 = Rpπ∗(G
∨ ⊗Hq(E)) =⇒ Ep+q∞ = Rp+qπ∗(G

∨ ⊗ E).

Since π−1(y) ≤ 1 for all y ∈ Y , this spectral sequence degenerates. Hence we have Rπ∗(G
∨ ⊗Hq(E)) = 0

for q 6= −1, 0, π∗(G∨ ⊗H−1(E)) = 0 and R1π∗(G
∨ ⊗H0(E)) = 0. Therefore E ∈ CG. �

Lemma 1.1.8. For the locally free sheaf G on X and the tilted category CG in Lemma 1.1.5, we set

TD :={E ∈ Coh(X)|R1π∗(G⊗ E) = 0},
SD :={E ∈ Coh(X)|π∗(G⊗ E) = 0}.

(1.16)

Then (TD, SD) is a torsion pair and G∨ is a local projective generator of the tilted category. We denote the
tilted category by CDG .

Proof. Since R1π∗(G
∨ ⊗G) = 0, G∨ ∈ TD. We show that TD ∩ SD = 0. Assume that Rπ∗(G⊗ E) = 0 for

a coherent sheaf E on X . Since

Hi(Y,Rπ∗(G⊗ E)(−k)) =Hi(X,G⊗ E(−k))
=Hn−i(X,G∨ ⊗DX(E)(KX)⊗OX(k))∨

=Hn−i(Y,Rπ∗(G
∨ ⊗DX(E)(KX))(k))∨

(1.17)

for all k ∈ Z andHj(Y,Hn−i(Rπ∗(G
∨⊗DX(E)(KX)))(k)) = 0 for k ≫ 0 and j 6= 0, we getHn−i(Y,Rπ∗(G

∨⊗
DX(E)(KX))(k)) = H0(Y,Hn−i(Rπ∗(G

∨ ⊗ DX(E)(KX)))(k)) = 0 for k ≫ 0. Therefore Rπ∗(G
∨ ⊗

5



DX(E)(KX)) = 0. Since dimπ−1(y) ≤ 1 for all y ∈ Y , we see that Rπ∗(G
∨ ⊗ Hi(DX(E)(KX))) =

Rπ∗(H
i(G∨ ⊗D(E)(KX))) = 0 (see the proof of Lemma 1.1.7). Since G is a local projective generator of

CG, Hi(DX(E)(KX)) = 0 for all i. Therefore DX(E)(KX) = 0, which implies that E = 0. �

Remark 1.1.9. If E is a local projective object of CG, that is, R1π∗(E
∨ ⊗ F ) = 0 for all F ∈ CG, then

E∨ ∈ CDG . Indeed by G ∈ CG, we have R1π∗(E
∨ ⊗G) = 0, which implies that E∨ ∈ TD. Moreover since G∨

is a local projective generator of CD and R1π∗(E ⊗G∨) = 0, E∨ is a local projective object of CD.
1.1.1. Irreducible objects of C.
Lemma 1.1.10. Let G be a locally free sheaf on X such that Rπ∗(G

∨ ⊗ F ) 6= 0 for all non-zero coherent
sheaf F on a fiber of π. Then for a coherent sheaf E on X, π∗(G

∨⊗E) = 0 implies R1π∗(G
∨⊗E|π−1(y)) 6= 0

for all y ∈ π(Supp(E)).

Proof. Assume that R1π∗(G
∨⊗E|π−1(y)) = 0. By Lemma 1.1.16 below, R1π∗(G

∨⊗E) = 0 in a neighborhood

of y. ThusRπ∗(G
∨⊗E) = 0 in a neighborhood of y. Then Rπ∗(G

∨⊗E
L

⊗Lπ∗(Cy)) = Rπ∗(G
∨⊗E)

L

⊗Cy = 0.
Since the spectral sequence

(1.18) Epq2 = Rpπ∗(H
q(G∨ ⊗ E

L

⊗ Lπ∗(Cy))) =⇒ Ep+q∞ = Hp+q(Rπ∗(G
∨ ⊗ E

L

⊗ Lπ∗(Cy)))

degenerates, Rpπ∗(G
∨ ⊗ E ⊗ π∗(Cy)) = 0. By our assumption on G, we have E|π−1(y) = 0, which is a

contradiction. �

Definition 1.1.11. (1) An object E ∈ C is 0-dimensional, if Rπ∗(G
∨ ⊗ E) is 0-dimensional as an

object of Coh(Y ).
(2) An object E ∈ C is irreducible, if E does not have a proper subobject except 0.
(3) For a 0-dimensional object E ∈ C, we take a filtration

(1.19) 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = E

such that Fi/Fi−1 are irreducible objects of C. Then ⊕iFi/Fi−1 is the Jordan-Hölder decomposition
of E.

Remark 1.1.12. In section 1.4, we shall define the dimension of E generally. According to the definition of
the stability in Definition 1.4.1, we also have the following.

(1) A 0-dimensional object E is G-twisted semi-stable and a G-twisted stable object corresponds to an
irreducible object.

(2) The Jordan-Hölder decomposition ofE is nothing but the standard representative of the S-equivalence
class of E.

Lemma 1.1.13. Let G be a locally free sheaf on X and CG the tilted category in Lemma 1.1.5.

(1) Cx ∈ CG for all x ∈ X.
(2) For Cx, x ∈ π−1(y), the Jordan-Hölder decomposition does not depend on the choice of x ∈ π−1(y).

(3) Let ⊕syj=0E
⊕ayj
yj be the Jordan-Hölder decomposition of Cx, x ∈ π−1(y). Then the irreducible objects

of CG are

(1.20) Cx, (x ∈ X \ π−1(Yπ)), Eyj , (y ∈ Yπ , 0 ≤ j ≤ sy).
In particular, if Rπ∗(G

∨ ⊗ E) is a 0-dimensional A-module, then E is generated by (1.20).

Proof. (1) We note that Rπ∗(G
∨⊗Cx) = π∗(G

∨⊗Cx). Hence Cx ∈ CG. (2) Since the trace map G∨⊗G→
OX is surjective, we have a surjective map

(1.21) R1π∗(G
∨ ⊗G)→ R1π∗(OX)→ R1π∗(Oπ−1(y)red),

where π−1(y)red is the reduced subscheme of π−1(y). Since R1π∗(G
∨ ⊗G) = 0, we get

H1(π−1(y)red,Oπ−1(y)red) = H0(Y,R1π∗(Oπ−1(y)red)) = 0.

Then we see that π−1(y)red is a tree of smooth rational curves. Let Cyj , j = 0, ..., sy be the irreducible
component of π−1(y)red. Since the restriction map R1π∗(G

∨ ⊗ G) → R1π∗(G
∨ ⊗ G|Cyj

) is surjective,

R1π∗(G
∨ ⊗ G|Cyj

) = 0. Thus we can write G|Cyj
∼= OCyj

(dyj)
⊕ryj ⊕ OCyj

(dyj + 1)⊕r
′

yj . Since R1π∗(G
∨ ⊗

OCyj
(dyj)) = 0 and π∗(G

∨⊗OCyj
(dyj − 1)) = 0, OCyj

(dyj),OCyj
(dyj − 1)[1] ∈ CG. For x ∈ Cyj , we have an

exact sequence in CG
(1.22) 0→ OCyj

(dyj)→ Cx → OCyj
(dyj − 1)[1]→ 0.

Hence the Jordan-Hölder decomposition of Cx is constant on Cyj . Since π−1(y) is connected, the Jordan-
Hölder decomposition of Cx is determined by y.
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(3) Let E be an irreducible object of CG. Then we have (i) E = F [1], F ∈ Coh(X) or (ii) E ∈ Coh(X). In
the first case, since F ∈ S, we have π∗(G

∨ ⊗ F ) = 0. By Lemma 1.1.10, we have R1π∗(G
∨ ⊗ F|π−1(y)) 6= 0

for y ∈ π(Supp(F )), which implies that there is a quotient F|π−1(y) → F ′ such that 0 6= F ′ ∈ S for
y ∈ π(Supp(F )). Then we have a non-trivial morphism F [1] → F ′[1], which should be injective in CG.
Therefore π(Supp(F )) is a point. In the second case, we also see that π(Supp(E)) is a point. Therefore
Rπ∗(G

∨⊗E) is a 0-dimensional sheaf. (i) If E = F [1], then since π∗(G
∨⊗F ) = 0, F is purely 1-dimensional.

Then Hom(Cx, F [1]) = Hom(D(F )[n − 1], D(Cx)[n]) 6= 0 for x ∈ Supp(F ), where n = dimX . Hence we
have a non-trivial morphism Eyj → E, y ∈ π(Supp(F )) ∩ Yπ, which is an isomorphism. (ii) If E ∈ Coh(X),
then Hom(E,Cx) 6= 0 for x ∈ Supp(E), which also implies that E ∼= Eyj for Supp(E) ⊂ π−1(y) or E ∼= Cx
for Supp(E) ⊂ X \ Yπ. �

Remark 1.1.14. Since π∗(G
∨ ⊗ Cx) is a coherent sheaf on the reduced point {y}, the multiplication π∗(t) :

Eyj → Eyj , t ∈ Iy is zero. Thus Hi(Eyj) are coherent sheaves on the scheme π−1(y).

Lemma 1.1.15. Let E be a coherent sheaf such that π(Supp(E)) = {y}.
(1) For E ∈ T with Supp(E) ⊂ π−1(y), there is a filtration

(1.23) 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = E

such that for every Fk/Fk−1, there is Eyj ∈ T and a surjective homomorphism Eyj → Fk/Fk−1 in
Coh(X).

(2) For E ∈ S, there is a filtration

(1.24) 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = E

such that for every Fk/Fk−1, there is Eyj [−1] ∈ S and an injective homomorphism Fk/Fk−1 →
Eyj [−1] in Coh(X).

Proof. (1) Since E ∈ T , E contains Eyj in C. Let F be the quotient in C. Then we have an exact sequence

(1.25) 0→ H−1(Eyj)→ 0→ H−1(F )→ H0(Eyj)→ E → H0(F )→ 0.

Hence Eyj ∈ T and H0(F ) ∈ T . We set F1 := im(Eyj → E) in Coh(X). Since E/F1 ∈ T and Supp(E/F1) ⊂
π−1(y), by the induction on the support of E, we get the claim.

(2) Since E ∈ S, there is a quotient E[1] → Eyj in C. Let F be the kernel in C. Then we have an exact
sequence

(1.26) 0→ H−1(F )→ E → H−1(Eyj)→ H0(F )→ 0→ H0(Eyj)→ 0.

Hence Eyj [−1] ∈ S and H−1(F ) ∈ S. We set E′ := im(E → H−1(Eyj)) in Coh(X). Then E′ is a subsheaf
of Eyj [−1] and E is an extension of E′ by H−1(F ) ∈ S. Since Supp(H−1(F )) ⊂ π−1(y), by the induction
on the support of E, we get the claim. �

Lemma 1.1.16. (1) π∗(π∗(Iπ−1(y)))→ Iπ−1(y) is surjective. In particular, Hom(Iπ−1(y),OCyj
(−1)) =

0 for all j.
(2) Ext1(Oπ−1(y),OCyj

(−1)) = 0 for all j. In particular,

H1(X,Hom(Oπ−1(y),OCyj
(−1))) = H0(X, Ext1(Oπ−1(y),OCyj

(−1))) = 0.

(3) For a coherent sheaf E on X, R1π∗(E) = 0 at y if and only if R1π∗(E|π−1(y)) = 0.

Proof. Since Iπ−1(y) = im(π∗(Iy) → OX), (1) holds. (2) Since Hom(OX ,OCyj
(−1)[k]) = 0 for all j and k,

the first claim follows from the exact sequence

(1.27) 0→ Iπ−1(y) → OX → Oπ−1(y) → 0.

Since H2(X,Hom(Oπ−1(y),OCyj
(−1))) = 0, the second claim follows from the local-global spectral sequence.

(3) The proof is similar to [Is1]. Assume that R1π∗(E|π−1(y)) = 0. We take a locally free sheaf V on Y such
that V → Iy is surjective. Then (1) implies that π∗(V )→ Iπ−1(y) is surjective. Hence we have a surjective

homomorphism π∗(V ⊗n) ⊗ Oπ−1(y) → Inπ−1(y)/I
n+1
π−1(y). Then we see that R1π∗(E ⊗ OX/Inπ−1(y)) = 0. By

the theorem of formal functions, we get the claim. �

Lemma 1.1.17. Let Eyj , y ∈ Yπ be the irreducible objects of CG. Let E be a coherent sheaf on X. If
Hom(E,Eyj [−1]) = 0 for all Eyj [−1] ∈ S, then E ∈ T .
Proof. We note that Hom(E|π−1(y), Eyj [−1]) = 0 for all Eyj [−1] ∈ S. By Lemma 1.1.15 (2), E|π−1(y) ∈ T .
Then R1π∗(G

∨ ⊗ E|π−1(y)) = 0. By Lemma 1.1.16, R1π∗(G
∨ ⊗ E) = 0 in a neighborhood of y. Since y is

any point of Yπ, R
1π∗(G

∨ ⊗ E) = 0, which implies that E ∈ T . �

For a subcategory C of D(X), we set

(1.28) Cy := {E ∈ C|π(Supp(Hi(E))) = {y}, i ∈ Z}.
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Lemma 1.1.18. Let (S, T ) be a torsion pair of Coh(X) and C the tilted category. Assume that

(i) #Yπ <∞ and every object of Cy, y ∈ Y is of finite length.
(ii) Cx ∈ C for all x ∈ X.
(iii) π(Supp(E)) ⊂ Yπ for E ∈ S.

Then the claims of Lemma 1.1.15 and Lemma 1.1.17 hold.

Proof. By (i) and (iii), irreducible objects areE = Cx, x ∈ X\π−1(Yπ) or irreducible objects of Cy, y ∈ Yπ. By
(ii), we get Lemma 1.1.13 (3). The other claims of Lemma 1.1.13 and Lemma 1.1.15 are obvious. For 0 6= E ∈
S, (i) and Lemma 1.1.15 imply that there is a coherent sheaf Eyj [−1] ∈ S such that Hom(E,Eyj [−1]) 6= 0.
Hence Lemma 1.1.17 also holds. �

Proposition 1.1.19. Assume that Yπ = {p1, ..., pm}. Let G be a locally free sheaf on X and CG the tilted

category in Lemma 1.1.5. For Cx, x ∈ π−1(pi), let ⊕sij=0E
⊕aij
ij be the Jordan-Hölder decomposition of Cx,

where Eij are irreducible objects.

(1) We set

Σ :={Eij [−1]|i, j} ∩ Coh(X)

T :={E ∈ Coh(X)|Hom(E, c) = 0, c ∈ Σ}
S :={E ∈ Coh(X)| E is a successive extension of subsheaves of c ∈ Σ }.

(1.29)

Then (T ,S) is a torsion pair of Coh(X) whose tilting is CG. In particular, CG is characterized by
Σ.

(2) CDG is characterized by

(1.30) Σ := {(DX(Eij)⊗KX [n])[−1]|i, j} ∩ Coh(X) = DX({Eij |i, j} ∩ Coh(X))⊗KX [n− 1],

where n = dimX.

Proof. (1) For E ∈ Coh(X), we consider φ : G⊗π∗(π∗(G
∨⊗E))→ E. We set E1 := imφ and E2 := cokerφ.

Since Hom(G,Eij [−1]) = 0 for all Eij , G ∈ T . Hence E1 ∈ T . We shall show that E2 ∈ S. We note that
Rπ∗(G

∨ ⊗ E1) = π∗(G
∨ ⊗ E1) and Rπ∗(G

∨ ⊗ E2) = R1π∗(G
∨ ⊗ E)[−1]. Then E1, E2[1] ∈ CG. Since

Supp(E2) ⊂ ∪ni=1π
−1(pi), Lemma 1.1.13 (3) implies that E2[1] is generated by Eij . Hence if E2 6= 0, then

Hom(E2[1], c[1]) 6= 0 for an object c ∈ Σ. Let E′
2 be the kernel of E2 → c in Coh(X). Then E′

2[1] ∈ CG.
Hence by the induction on the support of E2, we see that E2 ∈ S. Therefore (T ,S) is a torsion pair of
Coh(X). We also see that

T = {E ∈ Coh(X)|R1π∗(G
∨ ⊗ E) = 0},

S = {E ∈ Coh(X)|π∗(G∨ ⊗ E) = 0}
(1.31)

and CG is the tilting of Coh(X).
(2) We note that Cx, x ∈ π−1(pi) is S-equivalent to ⊕sij=0DX(Eij)⊗KX [n]

⊕aij , where DX(Eij)⊗KX [n] ∈
CDG . Hence the claim follows from (1). �

1.1.2. Local projective generators of C. Let (S, T ) be a torsion pair of Coh(X) such that the tilted category
C satisfies one of the following conditions.

(1) There is a local projective generator G ∈ T of C, that is, C is the category of perverse coherent
sheaves or

(2) C satisfies the following conditions:
(a) #Yπ <∞ and every object of Cy, y ∈ Y is of finite length.
(b) π(Supp(E)) ⊂ Yπ for E ∈ S.

We shall give a criterion for a two term complex to be a local projective generator of C. Let Eyj , j ∈ Jy
be the irreducible objects of Cy.
Lemma 1.1.20. Let E be an object of D(X) such that Hi(E) = 0 for i 6= −1, 0. If Ext1(E,Cx) = 0, then
E is a free sheaf in a neighborhood of x.

Proof. Since E fits in the exact triangle

(1.32) 0→ H−1(E)[1]→ E → H0(E)→ H−1(E)[2],

we have an exact sequence

(1.33) 0→ Ext1OX
(H0(E),Cx)→ Ext1OX

(E,Cx)→ HomOX
(H−1(E),Cx)→ Ext2OX

(H0(E),Cx).

Since Ext1(E,Cx) = H0(X, Ext1OX
(E,Cx)), Ext1OX

(E,Cx) = 0. Then Ext1OX
(H0(E),Cx) = 0, which im-

plies that H0(E) is a free sheaf in a neighborhood of x. Then ExtiOX
(H0(E),Cx) = 0 for i > 0. Hence

HomOX
(H−1(E),Cx) = 0. Therefore H−1(E) = 0 in a neighborhood of x. �
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Lemma 1.1.21. Let Eyj, y ∈ Y be the irreducible objects of C in Lemma 1.1.13. Let G1 be a locally free
sheaf of rank r on X such that

(1.34) (a) Hom(G1, Eyj [p]) = 0, p 6= 0 (b) χ(G1, Eyj) > 0

for all y, j.

(1) G1 is a locally free sheaf. If 0 6= E ∈ S, then π∗(G∨
1 ⊗ E) = 0 and R1π∗(G

∨
1 ⊗ E) 6= 0.

(2) If R1π∗(G
∨
1 ⊗ E) = 0, then E ∈ T .

(3) If 0 6= E ∈ T and Supp(E) ⊂ π−1(y), then π∗(G
∨
1 ⊗ E) 6= 0 and R1π∗(G

∨
1 ⊗ E) = 0. In particular,

χ(G1, E) > 0.

Proof. (1) We note that G1 ∈ T by Lemma 1.1.17. We first treat the case where C is the category of perverse
coherent sheaves. We consider the homomorphism π∗(π∗(G

∨
1 ⊗ E)) ⊗ G1 → E. Then imφ ∈ T ∩ S = 0.

Since π∗(G
∨
1 ⊗ imφ) = π∗(G

∨
1 ⊗ E), we get π∗(G

∨
1 ⊗ E) = 0. Let F 6= 0 be a coherent sheaf on a fiber and

take the decomposition

(1.35) 0→ F1 → F → F2 → 0

with F1 ∈ T, F2 ∈ S. Since F1, F2[1] ∈ C, the condition χ(G1, Eyj) > 0 implies that χ(G1, F1) > 0
or χ(G1, F2) < 0, which imply that π∗(G

∨
1 ⊗ F1) 6= 0 or R1π∗(G

∨
1 ⊗ F2) 6= 0. Since π∗(G

∨
1 ⊗ F1) is a

subsheaf of π∗(G
∨
1 ⊗ F ) and R1π∗(G

∨
1 ⊗ F2) is a quotient of R1π∗(G

∨
1 ⊗ F ), we get Rπ∗(G

∨
1 ⊗ F ) 6= 0.

Then we can apply Lemma 1.1.10 to E and get R1π∗(G
∨
1 ⊗ E|π−1(y)) 6= 0 for y ∈ π(Supp(E)). Since

R1π∗(G
∨
1 ⊗ E)→ R1π∗(G

∨
1 ⊗ E|π−1(y)) 6= 0 is surjective, we get the claim.

We next assume that #Yπ <∞. Then E[1] is generated by Eyj . Hence (1.34) imply that χ(G1, E[1]) > 0
and Rπ∗(G

∨
1 ⊗ E[1]) ∈ Coh(Y ). Hence R1π∗(G

∨
1 ⊗ E) 6= 0 and π∗(G

∨
1 ⊗ E) = 0.

(2) For E ∈ Coh(X), we take a decomposition

(1.36) 0→ E1 → E → E2 → 0

such that E1 ∈ T and E2 ∈ S. If R1π∗(G
∨
1 ⊗ E) = 0, then (1) implies that E2 = 0.

(3) By Lemma 1.1.15, we may assume that E is a quotient of Eyj , Eyj ∈ T in Coh(X). Since Eyj is
irreducible, φ : Eyj → E is injective in C. We set F := ker(Eyj → E) in Coh(X). Then F ∈ S and F [1] is
the cokernel of φ in C. Hence π∗(G∨

1 ⊗ F ) = 0 by (1). By our assumption, π∗(G
∨
1 ⊗ Eyj) 6= 0, Eyj ∈ T and

R1π∗(G
∨
1 ⊗ Eyj) = 0. Therefore our claim holds. �

Proposition 1.1.22. Let G1 be an object of D(X) such that Hi(E) = 0 for i 6= −1, 0 and satisfies

(1.37) (a) Hom(G1, Eyj [p]) = 0, p 6= 0 (b) χ(G1, Eyj) > 0.

(1) G1 is a locally free sheaf on X.
(2) R1π∗(G

∨
1 ⊗G1) = 0.

(3) For E ∈ Coh(X), E ∈ T if and only if R1π∗(G
∨
1 ⊗E) = 0, and E ∈ S if and only if π∗(G

∨
1 ⊗E) = 0.

(4) G1 is a local projective generator of CG.
Proof. (1) The claim follows from Lemma 1.1.20 and (a). (2) It is sufficient to prove that R1π∗(G

∨
1 ⊗

G1|π−1(y)) = 0 for all y ∈ Yπ. By Lemma 1.1.17, G1 ∈ T . Since Supp(G1|π−1(y)) = π−1(y) and G1|π−1(y) ∈ T ,
Lemma 1.1.15 (1) implies that G1|π−1(y) ∈ T is a successive extension of quotients of Eyj ∈ T . Hence it is

sufficient to prove R1π∗(G
∨
1 ⊗ Q) = 0 for all quotients Q of Eyj ∈ T . By our assumption on G1, we have

R1π∗(G
∨
1 ⊗ Eyj) = 0 for Eyj ∈ T . Therefore the claim holds.

(3) We set

T1 :={E ∈ Coh(X)|R1π∗(G
∨
1 ⊗ E) = 0},

S1 :={E ∈ Coh(X)|π∗(G∨
1 ⊗ E) = 0}.

(1.38)

By Lemma 1.1.21 (2), we get

(1.39) T1 ∩ S1 ⊂ T ∩ S1 = {E ∈ T |π∗(G∨
1 ⊗ E) = 0}.

If T ∩ S1 = 0, then Lemma 1.1.5 (1) implies that G1 is a local projective generator of CG1 . Since G1 ∈ T
by (2), Lemma 1.1.5 (3) also implies that C = CG1. Therefore we shall prove that T ∩ S1 = 0. Assume that
E ∈ T satisfies π∗(G

∨
1 ⊗E) = 0. We first prove that R1π∗(G

∨
1 ⊗E) = 0. By Lemma 1.1.16, it is sufficient to

prove R1π∗(G
∨
1 ⊗E|π−1(y)) = 0 for all y ∈ Y . This follows from Lemma 1.1.21 (3). Hence Rπ∗(G

∨
1 ⊗E) = 0.

Then we see that Rπ∗(G
∨
1 ⊗ E|π−1(y)) = 0 for all y ∈ Y by the proof of Lemma 1.1.10. Since E|π−1(y) ∈ T ,

Lemma 1.1.21 (3) implies that E|π−1(y) = 0 for all y ∈ Y . Therefore E = 0.
(4) This is a consequence of (3) and Lemma 1.1.5 (2). �

Remark 1.1.23. If G1 in Proposition 1.1.22 satisfies (1.37) (a) only, then the proofs of Lemma 1.1.21 and
Proposition 1.1.22 imply that G1 is a locally free sheaf such that R1π∗(G

∨
1 ⊗G1) = 0 and Rπ∗(G

∨
1 ⊗ F ) ∈

Coh(Y ) for F ∈ CG.
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Lemma 1.1.24. Let (S, T ) be a torsion pair of Coh(X) and C its tilting. Assume that one of the following
holds.

(i) C is the category of perverse coherent sheaves.
(ii) #Yπ <∞, Cy is Artinian and π(Supp(E)) ⊂ Yπ for E ∈ S.

Let G1 be a locally free sheaf of rank r on X such that

(1.40) χ(G1, Eyj) > 0.

Then Hom(G1, Eyj [k]) = 0, k 6= 0 if and only if R1π∗(G
∨
1 ⊗G1) = 0.

Proof. Assume that R1π∗(G
∨
1 ⊗ G1) = 0. We first prove that G1 ∈ T . Assume that G1 6∈ T . Then there

is a surjective homomorphism G1 → E in Coh(X) such that E ∈ S. If C has a local projective generator
G, then π∗(G

∨ ⊗ E) = 0. By Lemma 1.1.10, we have R1π∗(G
∨ ⊗ E|π−1(y)) 6= 0 for a point y ∈ Y . Hence

we may assume that Supp(E) ⊂ π−1(y). In the second case, since #Yπ < ∞, we may also assume that
Supp(E) ⊂ π−1(y). Then E[1] is generated by Eyj , 0 ≤ j ≤ sy. By our assumption, χ(G1, E[1]) > 0. Hence

Ext1(G1, E) 6= 0, which implies that R1π∗(G
∨
1 ⊗G1) 6= 0. Therefore G1 ∈ T . For Eyj ∈ T , we consider the

homomorphism φ : π∗(π∗(G
∨
1 ⊗ Eyj))⊗G1 → Eyj . Since Eyj is an irreducible object, φ is surjective in CG,

which implies that φ is surjective in Coh(X). Hence Ext1(G1, Eyj) = 0. For Eyj ∈ S[1], dimπ−1(y) ≤ 1 and

the locally freeness of G1 imply that Ext1(G1, Eyj) = 0. Since G1 ∈ T , we also get Hom(G1, Eyj[−1]) = 0
for all irreducible objects of C. �

Lemma 1.1.25. Let G be a locally free sheaf on X such that R1π∗(G
∨ ⊗G) = 0. Let E be a 1-dimensional

sheaf on a fiber of π such that χ(G,E) = 0. Then Rπ∗(G
∨ ⊗ E) = 0 if and only if E is a G-twisted

semi-stable sheaf with respect to an ample divisor L on X.

Proof. By the proof of Lemma 1.1.5 (1), we can take a decomposition

(1.41) 0→ E1 → E → E2 → 0

such that Rπ∗(G
∨ ⊗ E1) = π∗(G

∨ ⊗ E) and Rπ∗(G
∨ ⊗ E2) = R1π∗(G

∨ ⊗ E)[−1]. Then χ(G,E1) ≥ 0 ≥
χ(G,E2). Hence if E is G-twisted semi-stable, then π∗(G

∨⊗E1) = π∗(G
∨⊗E) = 0, which also implies that

R1π∗(G
∨ ⊗E) = 0. Conversely if π∗(G

∨⊗E) = R1π∗(G
∨ ⊗E) = 0, then π∗(G

∨ ⊗E′) = 0 for any subsheaf
E′ of E. Hence E is G-twisted semi-stable. �

Corollary 1.1.26. Assume that π : X → Y is the minimal resolution of a rational double point. Let H
be the pull-back of an ample divisor on Y . Then a locally free sheaf G on X is a tilting generator of the
categery CG in Lemma 1.1.5 if and only if

(i) R1π∗(G
∨ ⊗G) = 0 and

(ii) there is no G-twisted stable sheaf E such that rkE = 0, χ(G∨ ⊗ E) = 0, (c1(E), H) = 0 and
(c1(E)2) = −2.

Moreover (ii) is equivalent to rkG 6 |(c1(G), D) for D with (D,H) = 0 and (D2) = −2.
Proof. Let E be a 1-dimensional G-twisted stable sheaf on X . Then E is a sheaf on the exceptional locus if
and only if (c1(E), H) = 0. Under this assumption, we have χ(E,E) = −(c1(E)2) > 0. Hence (c1(E)2) = −2.
By Lemma 1.1.25, we get the first part of our claim. Since χ(G,E) = −(c1(G), c1(E)) + rkGχ(E), we also
get the second claim by [Y6, Prop. 4.6]. �

1.2. Examples of perverse coherent sheaves. Let π : X → Y be a birational map in subsection 1.1 with
Assumption 1.1.4. Let G be a locally free sheaf on X such that R1π∗(G

∨⊗G) = 0. We set A := π∗(G
∨⊗G)

as before. Let F be a coherent A-module on Y . Then Rπ∗((π
−1(F )

L

⊗π−1(A)G)⊗G∨) ∼= F as an A-module.
By using the spectral sequence, we see that

(1.42) Rpπ∗(G
∨ ⊗Hq(π−1(F )

L

⊗π−1(A) G)) = 0, p+ q 6= 0

and we have an exact sequence

(1.43) 0→ R1π∗(G
∨ ⊗H−1(π−1(F )

L

⊗π−1(A) G))→ F
λ→ π∗(G

∨ ⊗H0(π−1(F )
L

⊗π−1(A) G))→ 0.

We set

(1.44) π−1(F )⊗π−1(A) G := H0(π−1(E)
L

⊗π−1(A) G) ∈ Coh(X).

We set

S0 :={E ∈ Coh(X)|Rπ∗(G∨ ⊗ E) = 0},
S :={E ∈ Coh(X)|π∗(G∨ ⊗ E) = 0},
T :={E ∈ Coh(X)|R1π∗(G

∨ ⊗ E) = 0, Hom(E, c) = 0, c ∈ S0}.
(1.45)
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Lemma 1.2.1. For E ∈ Coh(X), let φ : π−1(π∗(G
∨ ⊗ E))⊗π−1(A) G→ E be the evaluation map.

(1) Rπ∗(G
∨ ⊗ kerφ) = 0, π∗(G

∨ ⊗ cokerφ) = 0 and R1π∗(G
∨ ⊗ E) ∼= R1π∗(G

∨ ⊗ cokerφ).
(2) (S, T ) is a torsion pair of Coh(X) and the decomposition of E is given by

(1.46) 0→ imφ→ E → cokerφ→ 0,

imφ ∈ T , cokerφ ∈ S.
Proof. (1) We have a homomorphism

(1.47) π∗(G
∨ ⊗ E)

λ−→ π∗(G
∨ ⊗ π−1(π∗(G

∨ ⊗ E))⊗π−1(A) G)
π∗(1G∨⊗φ)−→ π∗(G

∨ ⊗ E)

which is the identity. Then λ and π∗(1G∨⊗φ) are isomorphic. Hence we get imπ∗(1G∨⊗φ) = π∗(G
∨⊗imφ) =

π∗(G
∨ ⊗ E). Since R1π∗(G

∨ ⊗ π−1(π∗(G
∨ ⊗ E)) ⊗π−1(A) G) = 0, we get Rπ∗(G

∨ ⊗ kerφ) = 0. Since

R1π∗(G
∨ ⊗ imφ) = 0, we also get the remaining claims.

(2) We shall prove that imφ ∈ T . If im φ 6∈ T , then there is a homomorphism ψ : imφ → F such that
F ∈ S. Replacing F by imψ, we may assume that ψ is surjective. Since ψ ◦ φ is surjective, Hom(G,F ) 6= 0,
which is a contradiction. Therefore im φ ∈ T . Obviously we have S ∩ T = {0}. Therefore (S, T ) is a torsion
pair. �

Let C(G) be the tilting of Coh(X). Then C(G) is the category of perverse coherent sheaves in the sense
of Definition 1.1.1. Indeed we have the following.

Lemma 1.2.2. (cf. [VB, Prop. 3.2.5]) Let G be a locally free sheaf on X such that R1π∗(G
∨ ⊗G) = 0. Let

C(G) be the associated category. Then there is a local projective generator of C(G).
Proof. Let L be a line bundle on X such that G∨ ⊗ L is generated by global sections and det(G∨ ⊗ L) is
ample. We take a locally free resolution 0→ L−1 → L0 → L→ 0 such that R1π∗(L

∨
0 ⊗G) = 0. Then

(1.48) Rπ∗(L
∨ ⊗G)[1] = Cone(π∗(L

∨
0 ⊗G)→ π∗(L

∨
−1 ⊗G)).

We take a surjective homomorphism V → π∗(L
∨
−1 ⊗ G) from a locally free sheaf V on Y . Then we have

a morphism π∗(V ) ⊗ L → Lπ∗(Rπ∗(L
∨ ⊗ G))[1] ⊗ L → G[1], which induces a surjective homomorphism

V → R1π∗(L
∨ ⊗G). Hence we have a morphism

(1.49) L→ G[1]⊗ π∗(V )∨

such that the induced homomorphism

(1.50) V → π∗(Hom(G[1], G[1])) ⊗ V → R1π∗(L
∨ ⊗G)

is surjective. We set E := Cone(L → G[1] ⊗ π∗(V )∨)[−1]. Then E is a locally free sheaf on X and
φ : π∗(π∗(G

∨ ⊗ E)) ⊗ G → E is surjective by our choice of L. By (1.50) and our assumption, we have
R1π∗(E

∨ ⊗G) = 0. For F ∈ T , we consider the evaluation map ϕ : π∗(π∗(G
∨ ⊗F ))⊗G→ F . The proof of

Lemma 1.1.5 (1) implies that cokerϕ ∈ S0. By the definition of T , cokerϕ = 0. Thus ϕ is surjective. Hence
R1π∗(E

∨ ⊗ F ) = 0 for F ∈ T .
For F ∈ S, the surjectivity of φ implies that π∗(E

∨ ⊗ F ) = 0. If F 6∈ S0, then R
1π∗(G

∨ ⊗ F ) 6= 0, which
implies that R1π∗(E

∨ ⊗ F ) 6= 0. Assume that F ∈ S0. Then since Rπ∗(G
∨ ⊗ F ) = 0 for F ∈ S0, we have

R1π∗(E
∨ ⊗ F ) ∼= R1π∗(L

∨ ⊗ F ). Assume that R1π∗(L
∨ ⊗ F ) = 0 and F 6= 0. Let W be an irreducible

component of Supp(F ). Then F contains a subsheaf F ′ whose support is contained in W . If W → Y is
generically finite, then π∗(G

∨ ⊗ F ′) 6= 0, which is a contradiction. Therefore dimF ′ = dimπ(F ′) + 1. For a

point y ∈ π∗(F ′), we can take a homomorphism ψ : O⊕(rkG)−1
X → G∨ ⊗ L such that ψ|π−1(y) is injective for

any point of π−1(y). Then cokerψ is a line bundle in a neighborhood of π−1(y). Since π is proper, there is
an open neighborhood U of y such that cokerψπ−1(U) is a line bundle. Hence we have an exact sequence on

π−1(U):

(1.51) 0→ O⊕(rkG)
π−1(U) → (G∨ ⊗ L)|π−1(U) → C → 0,

where C := cokerψπ−1(U)/Oπ−1(U). We may assume that Supp(C)|π−1(y) is a finite set. Then Supp(F ′⊗C)→
Y is generically finite. Hence π∗(F

′ ⊗ C ⊗ L∨) 6= 0, which implies that π∗(F ⊗ C ⊗ L∨) 6= 0. On the other

hand, our assumptions impliy that Rπ∗(F
L

⊗ C ⊗ L∨) = 0. Since the spectral spectral sequence

(1.52) Epq2 = Rpπ∗(H
q(F

L

⊗ C ⊗ L∨))⇒ Ep+q∞ = Hp+q(Rπ∗(F
L

⊗ C ⊗ L∨))

degenerates, we have π∗(F ⊗C⊗L∨) = 0, which is a contradiction. Hence R1π∗(L
∨⊗F ) 6= 0 for all non-zero

F ∈ S0. Then G1 := G⊕ E satisfies

π∗(G
∨
1 ⊗ F ) 6= 0, R1π∗(G

∨
1 ⊗ F ) = 0, 0 6= F ∈ T

π∗(G
∨
1 ⊗ F ) = 0, R1π∗(G

∨
1 ⊗ F ) 6= 0, 0 6= F ∈ S.

(1.53)
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Therefore G1 is a local projective generator of C(G). �

We set

S∗ :={E ∈ Coh(X)|π∗(G∨ ⊗ E) = 0, Hom(c, E) = 0, c ∈ S0},
T ∗ :={E ∈ Coh(X)|R1π∗(G

∨ ⊗ E) = 0}.(1.54)

Lemma 1.2.3. (S∗, T ∗) is a torsion pair of Coh(X) and the tilted category C(G)∗ has a local projective
generator.

Proof. We set

S′
0 :={E ∈ Coh(X)|Rπ∗(G⊗ E) = 0},
S1 :={E ∈ Coh(X)|π∗(G⊗ E) = 0},
T1 :={E ∈ Coh(X)|R1π∗(G⊗ E) = 0, Hom(E, c) = 0, c ∈ S′

0}.
(1.55)

Then (S1, T1) is a torsion pair of Coh(X) and Lemma 1.2.2 implies that the tilted category C(G∨) has a local
projective generator G∨⊕E1, where E1 is a locally free sheaf on X such that φ : π∗(π∗(G⊗E1))⊗G∨ → E1

is surjective and R1π∗(G
∨ ⊗ E∨

1 ) = 0. By Lemma 1.1.8, (SD1 , T
D
1 ) is a torsion pair of Coh(X). We prove

that C(G)∗ = C(G∨)D by showing (SD1 , T
D
1 ) = (S∗, T ∗). By the surjectivity of φ, we have

(1.56) TD1 = {E ∈ Coh(X)|R1π∗(G
∨ ⊗ E) = R1π∗(E1 ⊗ E) = 0} = T ∗.

For a coherent sheaf E with π∗(G
∨⊗E) = 0, we consider ψ : π∗(π∗(E1⊗E))⊗E∨

1 → E. Then imψ ∈ TD1 =
T ∗ and cokerψ ∈ SD1 . Since π∗(G

∨⊗ imψ) = 0, imψ ∈ S0. Therefore if E ∈ S∗, then imψ = 0, which means
that E ∈ SD1 . Conversely if E ∈ SD1 , then S0 ⊂ TD1 implies that E ∈ S∗. Therefore (SD1 , T

D
1 ) = (S∗, T ∗). �

Let Eyj , y ∈ Yπ be the irreducible objects of C in Lemma 1.1.13 (3).

Lemma 1.2.4. We set S0y := {E ∈ S0|π(Supp(E)) = {y}}. Then S0y[1] is generated by {Eyj|Eyj ∈ S0[1]}.

Proof. For an exact sequence

(1.57) 0→ E1 → E → E2 → 0

in C, we have an exact sequence

(1.58) 0→ Rπ∗(G
∨ ⊗ E1)→ Rπ∗(G

∨ ⊗ E)→ Rπ∗(G
∨ ⊗ E2)→ 0

in Coh(Y ). If E ∈ S0[1], then Rπ∗(G
∨ ⊗ E1) = Rπ∗(G

∨ ⊗ E2) = 0. Then Rπ∗(G
∨ ⊗ H−1(E1)) =

Rπ∗(G
∨ ⊗ H−1(E2)) = 0 and Rπ∗(G

∨ ⊗ H0(E1)) = Rπ∗(G
∨ ⊗ H0(E2)) = 0. By the definition of T ,

H0(E1) = H0(E2) = 0. Hence E1, E2 ∈ S0[1]. Therefore the claim holds. �

By the construction of C(G) and C(G)∗, we have the following.

Proposition 1.2.5. We set A0 := π∗(G
∨ ⊗G). Then we have morphisms

(1.59)
C(G) → CohA0(Y )
E 7→ Rπ∗(G

∨ ⊗ E)

and

(1.60)
C(G)∗ → CohA0(Y )
E 7→ Rπ∗(G

∨ ⊗ E).

Let τ≥−1 : D(X) → D(X) be the trancation morphism such that Hp(τ≥−1(E)) = 0 for p < −1 and
Hp(τ≥−1(E)) = Hp(E) for p ≥ −1. By (1.42), we have

Hq(π−1(F )
L

⊗π−1(A) G) ∈ S0, q 6= −1, 0,

Σ(F ) := τ≥−1(π−1(F )
L

⊗π−1(A) G) ∈ C(G).
(1.61)

Thus we have a morphism Σ : CohA0(Y )→ C(G) such that Rπ∗(G
∨ ⊗ Σ(F )) = F for F ∈ CohA0(Y ).

12



1.2.1. p Per(X/Y ), p = −1, 0 and their generalizations. If S0 = {0}, then G is a local projective generator
of C(G). We give examples such that S0 6= {0}. For y ∈ Yπ, we set Zy := π−1(y) and Cyj , j = 1, ..., sy
the irreducible components of Zy. Assume that Rπ∗(OX) = OY . Then S0 for OX contains OCyj

(−1),
y ∈ Yπ . In this case, C(OX) is nothing but the category −1 Per(X/Y ) defined by Bridgeland. We also have
C(OX)∗ = C(O∨

X)D =0 Per(X/Y ). We shall study S0 containing line bundles on Cyj , y ∈ Yπ . For this
purpose, we first prepare some properties of S0 for OX .

Lemma 1.2.6. (1) Let E be a stable 1-dimensional sheaf such that Supp(E) ⊂ Zy and χ(E) = 1.
Then there is a curve D ⊂ Zy and E ∼= OD. Conversely if OD is purely 1-dimensional, χ(OD) = 1
and π(D) = {y}, then OD is stable. In particular, D is a subscheme of Zy.

(2) OZy
is stable.

Proof. (1) Since χ(E) = 1, π∗(E) 6= 0. Since π∗(E) is 0-dimensional, we have a homomorphism Cy → π∗(E).
Then we have a homomorphism φ : OZy

= π∗(Cy)→ E. We denote the image by OD. Since R1π∗(OX) = 0,

we have H1(X,OD) = 0. Hence χ(OD) ≥ 1. Since E is stable, φ must be surjective.
Conversely we assume that OD satisfies χ(OD) = 1. For a quotient OD → OC , H1(X,OC) = 0 implies

that χ(OC) ≥ 1, which implies that OD is stable.
(2) By OZy

= π∗(Cy) and the surjectivity of Cy → π∗(π
∗(Cy)), we get χ(OZy

) = 1. Hence OZy
is

stable. �

Lemma 1.2.7. (1) Let E be a stable purely 1-dimension sheaf such that π(Supp(E)) = {y} and χ(E) =
0. Then E ∼= OCyj

(−1).
(2) Let E be a 1-dimensional sheaf such that Rπ∗(E) = 0. Then E is a semi-stable 1-dimensional sheaf

with χ(E) = 0. In particular, E is a successive extension of OCyj
(−1), y ∈ Y , 1 ≤ j ≤ sy.

Proof. (1) We set n := dimX . We take a point x ∈ Supp(E). Then Ext1OX
(Cx, E) = Cx

L

⊗E[−n+1]. Since
E is purely 1-dimensional, depthOX,x

Ex = 1. Hence the projective dimension of E at x is n − 1. Then

T orOX

n−1(Cx, E) = H0(Cx
L

⊗ E[−n+ 1]) 6= 0. Since Ext1(Cx, E) = H0(X, Ext1OX
(Cx, E)) 6= 0, we can take a

non-trivial extension

(1.62) 0→ E → F → Cx → 0.

If F is not semi-stable, then since χ(F ) = 1, there is a quotient F → F ′ of F such that F ′ is a stable sheaf
with χ(F ′) ≤ 0. Then E → F ′ is an isomorphism, which is a contradiction. By Lemma 1.2.6, F = OD.
We take an integral curve C ⊂ D containing x. Since OD → Cx factor through OC , we have a surjective
homomorphism E → OC(−1). By the stability of E, E ∼= OC(−1).

(2) Let F be a subsheaf of E. Then we have π∗(F ) = 0, which implies that χ(F ) ≤ 0. Therefore E is
semi-stable. �

We shall slightly generalize −1 Per(X/Y ). Let G be a locally free sheaf on X .

Assumption 1.2.8. Assume that R1π∗(G
∨⊗G) = 0 and there are line bundles OCyj

(byj) on Cyj such that
Rπ∗(G

∨ ⊗OCyj
(byj)) = 0.

Lemma 1.2.9. (1) Let E be a locally free sheaf of rank r on X such that E|Cyj
∼= O⊕r

Cyj
. Then E is

the pull-back of a locally free sheaf on Y .
(2) G∨ ⊗G ∼= π∗(π∗(G

∨ ⊗G)).
Proof. (1) We consider the map φ : H0(E|Zy

) ⊗ OZy
→ E|Zy

. For any point x ∈ Zy, we have an exact
sequence

(1.63) 0→ Fx → OZy
→ Cx → 0

such that Rπ∗(Fx) = 0. By Lemma 1.2.7 (2) and our assumption, we have Rπ∗(E ⊗ Fx) = 0. Hence
H0(E|Zy

) → H0(E|{x}) is isomorphic and H1(E|Zy
) = 0. Therefore φ is a surjective homomorphism of

locally free sheaves of the same rank, which implies that φ is an isomorphism. By R1π∗(E) = 0 (Lem. 1.1.16
(3)) and the surjectivity of π∗(π∗(IZy

)) → IZy
, R1π∗(E ⊗ IZy

) = 0. Hence π∗(E) → π∗(E|Zy
) is surjective.

Then we can take a homomorphism O⊕r
U → π∗(E)|U in a neighborhood of y such that O⊕r

U → π∗(E|Zy
)

is surjective. Then we have a homomorphism π∗(O⊕r
U ) → E|π−1(U) which is surjective on Zy. Since π is

proper, replacing U by a small neighborhood of y, we have an isomorphism π∗(O⊕r
U )→ E|π−1(U). Therefore

E is the pull-back of a locally free sheaf on Y .
(2) Since G∨ ⊗ OCyj

(byj) is a locally free sheaf on Cyj with Rπ∗(G
∨ ⊗ OCyj

(byj)) = 0, we have G∨ ⊗
OCyj

(byj) ∼= OCyj
(−1)⊕ rkG. Hence G|Cyj

∼= OCyj
(1)⊕ rkG ⊗OCyj

(byj). Hence G∨ ⊗G|Cyj
∼= O⊕(rkG)2

Cyj
. By

(1), we get the claim.
�
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Lemma 1.2.10. For E ∈ Coh(X), we have

(1.64) π−1(π∗(G
∨ ⊗ E))⊗π−1(A) G⊗OX

G∨ ∼= π∗π∗(G
∨ ⊗ E).

Proof. By Lemma 1.2.9, we get

π−1(π∗(G
∨ ⊗ E))⊗π−1(A) G⊗OX

G∨ ∼=π−1(π∗(G
∨ ⊗ E))⊗π−1(A) π

−1(π∗(G⊗OX
G∨))⊗π−1(OY ) OX

∼=π−1(π∗(G
∨ ⊗ E))⊗π−1(OY ) OX

=π∗(π∗(G
∨ ⊗ E)).

(1.65)

Therefore the claims hold. �

Lemma 1.2.11. A-module π∗(G
∨ ⊗ Cx) does not depend on the choice of x ∈ π−1(y). We set

(1.66) Ay := π−1(π∗(G
∨ ⊗ Cx))⊗π−1(A) G, x ∈ Zy.

Proof. For the exact sequence

(1.67) 0→ OCyj
(byj)→ OCyj

(byj + 1)→ Cx → 0,

we have π∗(G
∨ ⊗ OCyj

(byj + 1)) ∼= π∗(G
∨ ⊗ Cx). Hence π∗(G

∨ ⊗ Cx) does not depens on the choice of
x ∈ Zy. �

Lemma 1.2.12. (1) Ay is a unique line bundle on Zy such that Ay|Cyj
∼= OCyj

(byj + 1).

(2) G∨ ⊗Ay ∼= O⊕ rkG
Zy

.

Proof. By Lemma 1.2.10, G∨ ⊗ Ay ∼= π∗(π∗(G
∨ ⊗ Cx)) ∼= O⊕ rkG

Zy
. Thus (2) holds. Since G|Zy

is a locally

free sheaf on Zy, Ay is a line bundle on Zy. Then A
⊗ rkG
y

∼= detG|Zy
. Since the restriction map Pic(Zy)→∏

j Pic(Cyj) is bijective and Pic(Cyj) ∼= Z, G|Cyj
∼= OCyj

(byj + 1)⊕ rkG imply the claim (1). �

Lemma 1.2.13. For a coherent sheaf E with Supp(E) ⊂ Zy, χ(G,E) ∈ Z rkG.

Proof. We note that K(Zy) is generated by OCyj
(byj) and Cx. For E with Supp(E) ⊂ Zy, we have a

filtration 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = E such that Fi/Fi−1 ∈ Coh(Zy). Hence the claim follows from
χ(G,OCyj

(byj)) = 0 and χ(G,Cx) = rkG. �

Lemma 1.2.14. (1) Let E be a G-twisted stable 1-dimensional sheaf such that Supp(E) ⊂ Zy and
χ(G,E) = rkG. Then there is a subscheme C of Zy such that χ(OC) = 1 and E ∼= Ay ⊗ OC .
Conversely for a subscheme C of Zy such that OC is 1-dimensional, χ(OC) = 1, E = Ay ⊗OC is
a G-twisted stable sheaf with χ(G,E) = rkG and π(Supp(E)) = {y}.

(2) Ay is G-twisted stable.

Proof. (1) We choose an exact sequence

(1.68) 0→ K → E → Cx → 0.

Since E is a G-twisted stable 1-dimensional sheaf with χ(G,E) = rkG, K is a G-twisted semi-stable sheaf
with χ(G,K) = 0. If π∗(G

∨⊗K) 6= 0, then we have a non-zero homomorphism φ : π−1(π∗(G
∨⊗K))⊗π−1(A)

G → K such that π∗(G
∨ ⊗ imφ) = π∗(G

∨ ⊗ K). Since R1π∗(G
∨ ⊗ imφ) = 0, χ(G, imφ) > 0, which

is a contradiction. Therefore π∗(G
∨ ⊗ K) = 0. Hence ξ : π∗(G

∨ ⊗ E) → π∗(G
∨ ⊗ Cx) is injective.

Since dimH0(Y, π∗(G
∨ ⊗ E)) ≥ χ(G,E) = rkG, ξ is an isomorphism. Then we have a homomorphism

ψ : Ay → E. Since π∗(G
∨⊗ imψ) = π∗(G

∨⊗E) and R1π∗(G
∨⊗ imψ) = 0, we get imψ = E. Since E⊗ADy ,

ADy := Hom(Ay ,OZy
) is a quotient of OZy

, there is a subscheme C of Zy such that E ⊗ ADy ∼= OC . Since

χ(G,E) = χ(G,Ay ⊗OC) = χ(O⊕ rkG
C ), we have χ(OC) = 1.

Conversely for E ⊗ A∨
y
∼= OC such that OC is 1-dimensional, C ⊂ Zy and χ(OC) = 1, we consider a

quotient E → F . Then F = Ay ⊗ OD, D ⊂ C. Since R1π∗(G
∨ ⊗ F ) = 0 and G∨ ⊗ Ay ⊗ OD ∼= O⊕ rkG

D ,
we get χ(G,F ) ≥ rkG. From this fact, we first see that E is purely 1-dimensional, and then we see that
G-twisted stable.

(2) follows from (1) and χ(OZy
) = 1. �

Lemma 1.2.15. Let E be a G-twisted stable purely 1-dimension sheaf such that π(Supp(E)) = {y} and
χ(G,E) = 0. Then E ∼= Ay ⊗OCyj

(−1) ∼= OCyj
(byj).

Proof. We set n := dimX . We take a point x ∈ Supp(E). Then Ext1OX
(Cx, E) = Cx

L

⊗ E[−n + 1]. Since
E is purely 1-dimensional, depthOX,x

Ex = 1. Hence the projective dimension of E at x is n − 1. Then
14



T orOX

n−1(Cx, E) = H0(Cx
L

⊗ E[−n+ 1]) 6= 0. Since Ext1(Cx, E) = H0(X, Ext1OX
(Cx, E)) 6= 0, we can take a

non-trivial extension

(1.69) 0→ E → F → Cx → 0.

If F is not G-twisted semi-stable, then since χ(G,F ) = rkG, there is a quotient F → F ′ of F such that F ′

is a G-twisted stable sheaf with χ(G,F ′) ≤ 0. Then E → F ′ is an isomorphism, which is a contradiction.
By Lemma 1.2.14, F is a quotient of Ay. Thus we may write F = Ay ⊗OD, where D is a subscheme of Zy.
We take an integral curve C ⊂ D containing x. Since OD → Cx factor through OC , we have a surjective
homomorphism E → Ay ⊗OC(−1). By the stability of E, E ∼= Ay ⊗OC(−1). �

Lemma 1.2.16. Let E be a 1-dimensional sheaf such that χ(G,E) = 0 and π(Supp(E)) = {y}. Then the
following conditions are equivalent.

(1) Rπ∗(G
∨ ⊗ E) = 0.

(2) E is a G-twisted semi-stable 1-dimensional sheaf with π(Supp(E)) = {y}.
(3) E is a successive extension of Ay ⊗OCyj

(−1), 1 ≤ j ≤ sy.
Proof. Lemma 1.1.25 gives the equivalence of (1) and (2). The equivalence of (2) and (3) follows from Lemma
1.2.15. �

Lemma 1.2.17. Let E be a 1-dimensional sheaf such that π∗(G,E) = 0. Then there is a homomorphism
E → Ay ⊗OCyj

(−1). In particular, E is generated by subsheaves of Ay ⊗OCyj
(−1), y ∈ Y , 1 ≤ j ≤ sy.

Proof. Since π(Supp(E)) is 0-dimensional, we have a decomposition E = ⊕iEi, Supp(Ei) ∩ Supp(Ej) = ∅,
i 6= j. So we may assume that π(Supp(E)) is a point. We note that χ(G,E) ≤ 0. If χ(G,E) = 0, then
χ(R1π∗(G

∨ ⊗ E)) = 0. Since dimE = 1 and π∗(G
∨ ⊗ E) = 0, we get dimπ(Supp(E)) = 0. Then we have

R1π∗(G
∨ ⊗ E) = 0. Hence the claim follows from Lemma 1.2.16. We assume that χ(G,E) < 0. Let

(1.70) 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = E

be a filtration such that Ei := Fi/Fi−1, 1 ≤ i ≤ s are G-twisted stable and χ(G,Ei)/(c1(Ei), L) ≤
χ(G,Ei−1)/(c1(Ei−1), L), where L is an ample divisor on X . Since π∗(G

∨ ⊗ E) = 0 for any G-twisted
stable 1-dimensional sheaf E on a fiber with χ(G,E) ≤ 0, replacing E by a G-twisted stable sheaf Es, we
may assume that E is G-twisted stable. We take a non-trivial extension

(1.71) 0→ E → F → Cx → 0.

Then F is purely 1-dimensional and χ(G,F ) = χ(G,E) + rkG ≤ 0 by Lemma 1.2.13. Assume that
there is a quotient F → F ′ of F such that F ′ is a G-twisted stable sheaf with χ(G,F ′)/(c1(F

′), L) <
χ(G,F )/(c1(F ), L) ≤ 0. Then φ : E → F ′ is surjective over X \ {x}. Hence χ(G,F ′)/(c1(F

′), L) ≥
χ(G, imφ)/(c1(im φ), L) ≥ χ(G,E)/(c1(E), L). Since (c1(F

′), L) ≤ (c1(F ), L) = (c1(E), L), we get χ(G,F ′) ≥
χ(G,E)(c1(F

′), L)/(c1(E), L) ≥ χ(G,E). If χ(G,F ′) = χ(G,E), then φ is an isomorphism. Since the ex-
tension is non-trivial, this is a contradiction. Therefore F is G-twisted semi-stable or χ(G,F ′) > χ(G,E).
Thus we get a homomorphism ψ : E → E′ such that E′ is a stable sheaf with χ(G,E) < χ(G,E′) < 0 and
ψ is surjective in codimension n− 1. By the induction on χ(G,E), we get the claim. �

Lemma 1.2.18. For a point y ∈ Yπ, let E be a 1-dimensional sheaf on X satisfying the following two
conditions:

(i) Hom(E,Ay ⊗OCyj
(−1)) = Ext1(E,Ay ⊗OCyj

(−1)) = 0 for all j.
(ii) There is an exact sequence

(1.72) 0→ F → E → Cx → 0

such that F is a G-twisted semi-stable 1-dimensional sheaf with π(Supp(F )) = {y}, χ(G,F ) = 0
and x ∈ Zy.

Then E ∼= Ay. Conversely, E := Ay satisfies (i) and (ii).

Proof. We first prove that Ay satisfies (i) and (ii). For the exact sequence

(1.73) 0→ F ′ → Ay → Cx → 0,

we have Rπ∗(G,F
′) = 0. Hence (ii) holds by Lemma 1.2.16. (i) follows from Lemma 1.1.16. Conversely we

assume that E satisfies (i) and (ii). By (ii), π∗(G
∨ ⊗ E) ∼= π∗(G

∨ ⊗ Cx) and R1π∗(G
∨ ⊗ E) = 0. By (i),

Lemma 1.2.1 and Lemma 1.2.16, π−1(π∗(G
∨ ⊗ E)) ⊗π−1(OY ) G → E is surjective. Hence we have an exact

sequence

(1.74) 0→ F ′ → Ay → E → 0,

where F ′ is aG-twisted semi-stable 1-dimensional sheaf with χ(G,F ′) = 0. Since Ext1(E,Ay⊗OCyj
(−1)) = 0

for all j, Ay ∼= E ⊕ F ′, which implies that Ay ∼= E. �
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We set

(1.75) Eyj :=

{
Ay, j = 0,

Ay ⊗OCyj
(−1)[1], j > 0.

Proposition 1.2.19. ([VB])

(1) Eyj, j = 0, ..., sy are irreducible objects of C(G).
(2) Cx, x ∈ π−1(y) is generated by Eyj. In particular, irreducible objects of C(G) are

(1.76) Cx, (x ∈ X \ π−1(Yπ)), Eyj , (y ∈ Yπ, j = 0, 1, ..., sy).

Proof. (1) Assume that there is an exact sequence in C(G):

(1.77) 0→ E1 → Ay → E2 → 0.

Since H−1(E1) = 0, E1 ∈ T and π∗(G
∨⊗E1) ∼= π∗(G

∨⊗Ay) = C⊕ rkG
y . Hence we have a non-zero morphism

Ay → E1. Since Hom(Ay, Ay) ∼= C, E1
∼= Ay and E2 = 0. For Ay ⊗ OCyj

(−1)[1], assume that there is an
exact sequence in C(G):

(1.78) 0→ E1 → Ay ⊗OCyj
(−1)[1]→ E2 → 0.

Since H0(E2) = 0, we have E2[−1] ∈ S. Then Lemma 1.2.17 implies that we have a non-zero morphism
E2 → Ay ⊗ OCyj

(−1)[1]. Since Hom(Ay ⊗OCyj
(−1)[1], Ay ⊗ OCyj

(−1)[1]) = C, we get E1 = 0. Therefore
Ay ⊗OCyj

(−1)[1] is irreducible. �

We give a characterization of T .

Proposition 1.2.20. (1) For E ∈ Coh(X), the following are equivalent.
(a) E ∈ T .
(b) Hom(E,Ay ⊗OCyj

(−1)) = 0 for all y, j.

(c) φ : π−1(π∗(G
∨ ⊗ E))⊗π−1(A) G→ E is surjective.

(2) If (c) holds, then kerφ ∈ S0.

Proof. (1) is a consequence of Lemma 1.2.1 and Lemma 1.1.17.
(2) The claim follows from Lemma 1.2.1. �

We note that G ⊗ HomOZy
(Ay,OZy

) ∼= O⊕ rkG
Zy

. Then we have HomOZy
(Ay ,OZy

) ∼= π−1(π∗(G ⊗
Cx))⊗π−1(A) G

∨. We set

(1.79) E∗
yj :=

{
Ay ⊗ ωZy

[1], j = 0,

Ay ⊗OCyj
(−1), j > 0.

Then we also have the following.

Proposition 1.2.21. [VB]

(1) E∗
yj, j = 0, ..., sy are irreducible objects of C(G)∗.

(2) Cx, x ∈ π−1(y) is generated by E∗
yj. In particular, irreducible objects of C(G)∗ are

(1.80) Cx, (x ∈ X \ π−1(Yπ)), E∗
yj , (y ∈ Yπ, j = 0, 1, ..., sy).

Lemma 1.2.22. For a point y ∈ Yπ, let E be a 1-dimensional sheaf on X satisfying the following two
conditions:

(i) Hom(Ay ⊗OCyj
(−1), E) = Ext1(Ay ⊗OCyj

(−1), E) = 0 for all j.
(ii) There is an exact sequence

(1.81) 0→ E → F → Cx → 0

such that F is a G-twisted semi-stable 1-dimensional sheaf with π(Supp(F )) = {y}, χ(G,F ) = 0
and x ∈ Zy.

Then E ∼= Ay ⊗ ωZy
.

Proof. We set n := dimX . For a purely 1-dimensional sheaf E on X , RHomOX
(E,KX [n − 1]) ∈ Coh(X)

and RHomOX
(E,KX [n − 1]) = HomOC

(E,ωC) if E is a locally free sheaf on a curve without embedded
primes. Hence the claim follows from Lemma 1.2.18. �
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1.3. Families of perverse coherent sheaves. We shall explain families of complexes which correspond
to families of A-modules via Morita equivalence. Let f : X → S and g : Y → S be flat families of projective
varieties parametrized by a scheme S and π : X → Y an S-morphism. Let OY (1) be a relatively ample line
bundle over Y → S. We assume that

(i) X → S is a smooth family,
(ii) there is a locally free sheaf G on X such that Gs := G|f−1(s), s ∈ S are local projective generators

of a family of abelian categories Cs ⊂ D(Xs) and
(iii) dimπ−1(y) ≤ 1 for all y ∈ Y , i.e., π satisfies Assumption 1.1.4.

Then Cs is a tilting of Coh(Xs).

Remark 1.3.1. (i), (ii) and (iii) imply that

(iv) R1π∗(G
∨ ⊗G) = 0.

(v)

(1.82) {E ∈ Coh(X)|Rπ∗(G∨ ⊗ E) = 0} = 0.

Thus G defines a tilting C of Coh(X).

Indeed if E ∈ Coh(X) satisfies Rπ∗(G
∨ ⊗ E) = 0, then the projection formula implies that Rπ∗(G

∨ ⊗ E
L

⊗
Lf∗(Cs)) = Rπ∗(G

∨⊗E)
L

⊗Lg∗(Cs) = 0 for all s ∈ S. Then Rπ∗(G
∨⊗Hp(E

L

⊗Lf∗(Cs))) = 0 for all p and

s ∈ S. By (ii), Hp(E
L

⊗Lf∗(Cs)) = 0 for all p and s ∈ S. Therefore (v) holds. (iv) is obvious. Conversely if
(i), (iii), (iv) and (v) hold, then (ii) holds. So we may replace (ii) by (iv) and (v).

For a morphism T → S, we set XT := X ×S T , YT := Y ×S T and πT := π × idT .

Definition 1.3.2. (1) A family of objects in Cs, s ∈ S means a bounded complex F • of coherent sheaves
on X such that F i are flat over S and F •

s ∈ Cs for all s ∈ S.
(2) A family of local projective generators is a locally free sheaf G on X such that Gs := G|f−1(s), s ∈ S

are local projective generators of a family of abelian categories Cs.
Remark 1.3.3. If F •

s ∈ Coh(Xs) for all s ∈ S, then F • is isomorphic to a coherent sheaf on X which is flat
over S.

Lemma 1.3.4. For a family F • of objects in Cs, s ∈ S, there is a complex F̃ • such that (i) F̃ is ∈ Cs, s ∈ S,
(ii) F̃ i are flat over S, and (iii)F • ∼= F̃ •.

Proof. We set d := dimXs, s ∈ S. For the bounded complex F •, we take a locally free resolution of OX
(1.83) 0→ V−d → · · · → V−1 → V0 → OX → 0

such that Rkπ∗((G
∨ ⊗ V ∨

i ⊗ F j)s) = 0, k > 0 for 0 ≤ i ≤ d − 1 and all j. Since X → Y is projective,
we can take such a resolution. Then Rkπ∗((G

∨ ⊗ V ∨
−d ⊗ F j)s) = 0, k > 0 for all j. Therefore we have an

isomorphism F • ∼= V ∨
• ⊗F • such that (V ∨

• ⊗F •)i are S-flat and (V ∨
• ⊗F •)is = ⊕p+q=iV ∨

−p ⊗F qs ∈ Cs for all
s ∈ S. �

Proposition 1.3.5. (1) Let F • be a family of objects in Cs, s ∈ S. Then we get

(1.84) F • ∼= Cone(E1 → E2),

where Ei ∈ Coh(X) are flat over S and (Ei)s ∈ Cs, s ∈ S.
(2) Let F • be a family of objects in Cs, s ∈ S. Then we have a complex

(1.85) G(−n1)⊗ f∗(U1)→ G(−n2)⊗ f∗(U2)→ F • → 0

whose restriction to s ∈ S is exact in Cs, where U1, U2 are locally free sheaves on S.
(3) Let F be an A-module flat over S. Then we can attach a family E of objects in Cs, s ∈ S such that

Rπ∗(G
∨ ⊗ E) = F . The correspondence is functorial and E is unique in D(X). We denote E by

π−1(F )⊗π−1(A) G.

Proof. (1) We may assume that (i), (ii), (iii) in Lemma 1.3.4 hold for F •. We take a sufficiently large n with
Homf (G(−n), F j [i]) = 0, i > 0 for all j. Then W j := Homf (G(−n), F j) are locally free sheaves. Let W • :=
RHomf (G(−n), F •) be the complex defined by W j , j ∈ Z. Then we have a morphism G(−n)⊗ f∗(W •)→
F •. Since F •

s ∈ Cs, s ∈ S, Hom(Gs(−n), F •
s [i]) = 0 for i 6= 0 and all s ∈ S. Then the base change theorem

implies that U := Homf (G(−n), F •) is a locally free sheaf on S and Homf (G(−n), F •)s ∼= Hom(G(−n)s, F •
s ).

Hence G(−n)⊗ f∗(W •) ∼= G(−n)⊗ f∗(U), which defines a family of morphisms

(1.86) G(−n)⊗ f∗(U)→ F •.
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Since F •
s ∈ Cs for all s ∈ S, Rπ∗(G∨ ⊗ F •) is a coherent sheaf on Y which is flat over S, and g∗g∗(π∗(G

∨ ⊗
F •)(n)) → π∗(G

∨ ⊗ F •)(n) is surjective in Coh(Y ) for n ≫ 0. Since W • ∼= g∗(π∗(G
∨ ⊗ F •)(n)), the

homomorphism

(1.87) π∗(G
∨ ⊗G)(−n)⊗ g∗(U)→ π∗(G

∨ ⊗ F •)

in Coh(Y ) is surjective for n≫ 0. Thus we have a family of exact sequences

(1.88) 0→ E• → G(−n)⊗ f∗(U)→ F • → 0

in Cs, s ∈ S. Since G ∈ Coh(X), we have E• ∈ Coh(X) which is flat over S. (2) is a consequence of (1).
(3) We take a resolution of F

(1.89) · · · d
−3

→ g∗(U−2)⊗A(−n2)
d−2

→ g∗(U−1)⊗A(−n1)
d−1

→ g∗(U0)⊗A(−n0)→ F → 0,

where Ui are locally free sheaves on S. Then we have a complex

(1.90) · · · d̃
−3

→ f∗(U−2)⊗G(−n2)
d̃−2

→ f∗(U−1)⊗G(−n1)
d̃−1

→ f∗(U0)⊗G(−n0).

By the Morita equivalence (Proposition 1.1.3), we have im d̃−is = ker d̃−i+1
s in Cs for all s ∈ S. Let coker d̃−2

be the cokernel of d̃−2 in Coh(X). Then by Lemma 1.3.6 below, coker d̃−2 is flat over S, (coker d̃−2)s =

coker(d̃−2
s ) ∈ Cs and

(1.91) E := Cone(coker d̃−2 → f∗(U0)⊗G(−n0))

is a family of objects in Cs. By the construction, we have Es = π−1(Fs) ⊗π−1(As) Gs. It is easy to see the
class of E in D(X) does not depend on the choice of the resolution (1.89) (cf. [B-S, Lem. 14]). �

Lemma 1.3.6. Let Ei, 0 ≤ i ≤ 3 be coherent sheaves on X which are flat over S. Let

(1.92) E0 d0→ E1 d1→ E2 d2→ E3

be a complex in Coh(X).

(1) If ker d1s = im d0s in Coh(Xs), then (im d1)s → E2
s is injective. In particular if ker d1s = im d0s in

Coh(Xs) for all s ∈ S, then cokerd1, im d1, ker d1 in Coh(X) are flat over S and im d0 = ker d1.
(2) Assume that Eis ∈ Cs for all s ∈ S. We denote the kernel, cokernel and the image of dis in Cs by

kerCs
dis, cokerCs

dis and imCs
dis respectively. If Eis ∈ Cs and kerCs

dis = imCs
di−1
s , i = 1, 2 in Cs for

all s, then imCs
di−1
s coincide with the image of di−1

s in Coh(Xs) for i = 1, 2 and kerCs
d1s coincides

with the kernel of d1s in Coh(Xs). In particular, E
•
: E2/d1(E1)→ E3 is a family of objects in Cs

and we get an exact triangle:

(1.93) kerd0 → E• → E
• → ker d0[1]

where ker d0 is the kernel of d0 in Coh(X), which is flat over S.

Proof. (1) Let K be the kernel of ξ : (im d1)s → E2
s . Then we have an exact sequence

(1.94) (ker d1)s → ker(d1s)→ K → 0.

Since the image of E0
s → (ker d1)s → E1

s is d0s(E
0
s ) = ker(d1s), K = 0. The other claims are easily follows

from this.
(2) By our assumption, imCs

dis = cokerCs
di−1
s for i = 1, 2. Since imCs

dis is a subobject of Ei+1
s for

i = 0, 1, 2, imCs
dis ∈ Coh(Xs) for i = 0, 1, 2 and H−1(cokerCs

di−1
s ) = H−1(imCs

dis) = 0 for i = 1, 2. Then
H0(imCs

di−1
s ) → H0(Eis) is injective for i = 1, 2, which implies that imCs

di−1
s is the image of di−1

s in
Coh(Xs) for i = 1, 2. By the exact sequence

(1.95) 0→ H0(kerCs
d1s)→ H0(E1

s )→ H0(imCs
d1s)→ 0

and the injectivity of H0(imCs
d1s)→ H0(E2

s ), kerCs
d1s is the kernel of d1s in Coh(Xs). Then the other claims

follow from (1). �

1.3.1. Quot-schemes.

Lemma 1.3.7. Let A be an OY -algebras on Y which is flat over S. Let B be a coherent A-module on Y

which is flat over S. There is a closed subscheme QuotA,PB/Y/S of Q := QuotPB/Y/S parametrizing all quotient

As-modules F of Bs with χ(F (n)) = P (n).
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Proof. Let Q and K be the universal quotient and the universal subsheaf of B ⊗OS
OQ:

(1.96) 0→ K → B ⊗OS
OQ → Q→ 0.

Then we have a homomorphism

(1.97) K ⊗OS
A → B ⊗OS

OQ ⊗OS
A → B ⊗OS

OQ → Q
induced by the multiplication map B⊗OS

OQ⊗OS
A → B⊗OS

OQ. Let Z = QuotA,PB/Y/S be the zero locus of

this homomorphism. Then for an S-morphism T → Q, K⊗OS
OT is an A⊗OS

OT -submodule of B⊗OS
OT

if and only if T → Q factors through Z. �

Corollary 1.3.8. Let G′ be a family of objects in Cs, s ∈ S. Then there is a quot-scheme QuotC,PG′/X/S

parametrizing all quotients G′
s → E in Cs, where P is the Gs-twisted Hilbert-polynomial of the quotient

Gs → E, s ∈ S.
Proof. We set A := π∗(G

∨⊗OX
G). Then A is a flat family of OY -algebras on Y and we have an equivalence

between the category of AT -modules F flat over T and the categoty of families E of objects in Ct, t ∈ T by
F 7→ π−1

T (F )⊗π−1(AT ) GT . So the claim holds. �

1.4. Stability for perverse coherent sheaves. For a non-zero object E ∈ Cs, χ(Gs, E(n)) = χ(Rπ∗(G
∨
s ⊗

E)(n)) > 0 for n≫ 0 and there are integers ai(E) such that

(1.98) χ(Gs, E(n)) =
∑

i

ai(E)

(
n+ i

i

)
.

Definition 1.4.1 (Simpson). Assume that Cs is a tilting of Coh(Xs) for all s ∈ S.
(1) An object E ∈ Cs is d-dimensional, if ad(E) > 0 and ai(E) = 0, i > d.
(2) An object E ∈ Cs of dimension d is Gs-twisted semi-stable if

(1.99) χ(Gs, F (n)) ≤
ad(F )

ad(E)
χ(Gs, E(n)), n≫ 0

for all proper subobject F of E.

Remark 1.4.2. (1) If dimE > dimπ(Zs) and E is Gs-twisted semi-stable, then H−1(E) = 0. Indeed
H−1(E)[1] is a subobject of E with

(1.100) degχ(Gs, H
−1(E)(n)) ≤ dimπ(Zs) < degχ(Gs, E(n)).

(2) Assume that E ∈ Coh(Xs) ∩ Cs. For an exact sequence

(1.101) 0→ F → E → F ′ → 0

in Cs, we have an exact sequence in Coh(Xs)

(1.102) H−1(F ′)
ϕ→ H0(F )→ H0(E)→ H0(F ′)→ 0.

Since χ(Gs, H
0(F )(n)) ≤ χ(Gs, (cokerϕ)(n)), in order to check the semi-stability of E, we may

assume that H−1(F ′) = 0.

Proposition 1.4.3. There is a coarse moduli scheme M
C,P

X/S → S of Gs-twisted semi-stable objects E ∈ Cs
with the Gs-twisted Hilbert polynomial P . M

C,P

X/S is a projective scheme over S.

Proof. The claim is due to Simpson [S, Thm. 4.7]. We set A := π∗(G
∨ ⊗ G). If we set Λ0 = OY and

Λk = A for k ≥ 1, then a sheaf of A-module is an example of Λ-modules in [S]. Let Qss be an open

subscheme of QuotA,PA(−n)⊗V/Y/S consisting of semi-stable As-modules on Ys, s ∈ S. Then we have the

moduli space M
A,P

Y/S → S of semi-stable As-modules on Ys as a GIT-quotient Qss//GL(V ), where we use a
natural polarization on the embedding of the quot-scheme into the Grassmannian. By a standard argument

due to Langton, we see that M
A,P

Y/S is projective over S. Since the semi-stable As-modules correspond

to Gs-twisted semi-stable objects via the Morita equivalence (Proposition 1.3.5), we get the moduli space

M
C,P

X/S → S, which is projective over S. �

We consider a natural relative polarization onM
C,P

X/S . LetQ
ss be the open subscheme of QuotC,PG(−n)⊗V/X/S

∼=
QuotA,PA(−n)⊗V/Y/S such that M

C,P

X/S = Qss//GL(V ), where V is a vector space of dimension P (n). Let Q
be the universal quotient on Qss × X . Then Q|{q}×X is G-twisted semi-stable for all q ∈ Qss. By the
construction of the moduli space, we have a GL(V )-equivariant isomorphism V → pQss(G∨⊗Q(n)). We set

Lm,n := det pQss!(G
∨ ⊗Q(n+m))⊗P (n) ⊗ det pQss!(G

∨ ⊗Q(n))⊗(−P (m+n))

=det pQss!(G
∨ ⊗Q(n+m))⊗P (n) ⊗ detV ⊗(−P (m+n)).

(1.103)

19



We note that Rπ∗(G
∨ ⊗ Q) gives the universal quotient A-module on Y × QuotA,PA(−n)⊗V/Y/S . By the

construction of the moduli space, we get the following.

Lemma 1.4.4. Lm,n, m≫ n≫ 0 is the pull-back of a relatively ample line bundle on M
C,P

X/S .

Assume that S = Spec(C) and dimX = 2. We set OX(1) = OX(H).

Definition 1.4.5. (1) For e ∈ K(X)top, M
G

H(e) is the moduli space of G-twisted semi-stable objects
E of C with τ(E) = e and MG

H (e) the open subscheme consisting of G-twisted stable objects.
(2) Let MH(e)µ-ss (resp. MG

H(e)
ss,MG

H(e)
s) be the moduli stack of µ-semi-stable (resp. G-twisted

semi-stable, G-twisted stable) objects E of C with τ(E) = e.

We set r0 := rk e and ξ0 := c1(e). Then we see that

ch(P (n)G∨((n+m)H)− P (n+m)G∨(nH))

=m

[
(rkG)r0

2
(H2) {(m− 2n) chG∨ − n(n+m)((rkG)H − (c1(G), H)̺X)}

+(H, (rkG)ξ0 − r0c1(G)−
(rkG)r0

2
KX)

(
− chG∨ +

n(n+m)

2
(H2)(rkG)̺X

)]
.

(1.104)

Lemma 1.4.6. We take ζ ∈ K(X) with ch(ζ) = r0H + (ξ0, H)̺X . Assume that τ(G) ∈ Ze. If χ(e, e) = 0
and E ∼= E ⊗KX for all E ∈ MG

H(e)ss, then det pQss!(Q⊗ ζ∨) ∼= det pQss!(Q∨ ⊗ ζ)∨ is the pull-back of an

ample line bundle L(ζ) on M
G

H(e).

Proof. We first note that det pQss!(Q⊗ E∨) ∼= OQss for E ∈ MG
H(e)ss. We set τ(G) = λe, λ ∈ Z>0. Then

P (n)G∨((n+m)H)−P (n+m)G∨(nH) ≡ mn(n+m)λζ∨ mod Ze∨. By Lemma 1.4.4, we get our claim. �

Definition 1.4.7. (1) P (e) is the set of subobject E′ of E ∈MH(e)µ-ss such that

(1.105)
(c1(G

∨ ⊗ E), H)

rkE
=

(c1(G
∨ ⊗ E′), H)

rkE′
.

(2) For E′ ∈ P (e), we define a wall WE′ ⊂ NS(X)⊗ R as the set of α ∈ NS(X)⊗ R satisfying

(1.106)

(
α,
c1(G

∨ ⊗ E)

rkE
− c1(G

∨ ⊗ E′)

rkE′

)
+

(
χ(G∨ ⊗ E)

rkE
− χ(G∨ ⊗ E′)

rkE′

)
= 0.

Since τ(E′) is finite, ∪E′WE′ is locally finite. If α ∈ NS(X)⊗Q does not lie on any WE′ , we say that α is
general. If a local projective generator G′ satisfies α := c1(G

′)/ rkG′ − c1(G)/ rkG 6∈ ∪E′WE′ , then we also
call G′ is general.

Lemma 1.4.8. If G is general, i.e., 0 6∈ ∪E′WE′ , then for E′ ∈ P (e),

(1.107)
χ(G, e)

rk e
=
χ(G,E′)

rkE′
⇐⇒ e

rk e
=
τ(E′)

rkE′
∈ K(X)top ⊗Q.

In particular, if e is primitive, then M
G

H(e) =MG
H(e) for a general G.

1.5. A generalization of stability for 0-dimensional objects. It is easy to see that every 0-dimensional
object is Gs-twisted semi-stable. Our definition is not sufficient in order to get a good moduli space. So we
introduce a refined version of twisted stability.

Definition 1.5.1. Let G,G′ be families of local projective generators of Cs. A 0-dimensional object E is
(Gs, G

′
s)-twisted semi-stable, if

(1.108)
χ(G′

s, E1)

χ(Gs, E1)
≤ χ(G′

s, E)

χ(Gs, E)

for all proper subobject E1 of E.

By a modification of Simpson’s construction of moduli spaces, we can construct the coarse moduli scheme
of (Gs, G

′
s)-twisted semi-stable objects. From now on, we assume that S = Spec(C) for simplicity.

Lemma 1.5.2. Let G be a locally free sheaf on X which is a local projective generator of C.
(1) Assume that there is an exact sequence in C

(1.109) 0→ E′ → V0 → V1 → · · · → Vr → E → 0

such that Vi are local projective objects of C. If r ≥ dimX, then E′ is a local projective object of C.
(2) For E ∈ K(Y ), there is a local projective generator G′ of C such that E = G′ −NG(−n), where N

and n are sufficiently large integers.
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Proof. (1) We first prove that Hi(Rπ∗RHom(E,F )) = 0, i > dimX + 1 for all F ∈ C. Since C is a tilting
of Coh(X) (Lemma 1.1.7), Hi(E) = Hi(F ) = 0 for i 6= −1, 0. By using a spectral sequence, we get

(1.110) Hi(Rπ∗RHom(H−p(E)[p], H−q(F )[q])) = 0

for i > dimX + 1. Hence we get Hi(Rπ∗RHom(E,F )) = 0, i > dimX + 1. Then we see that

(1.111) Hi(Rπ∗RHom(E′, F )) ∼= Hi+r+1(Rπ∗RHom(E,F )) = 0

for all integer with i > max{dimX − r, 0} = 0. Therefore E′ is a local projective object.
(2) We first prove that there are local projective generators G1, G2 such that E = G1 − G2. We may

assume that E ∈ C. We take a resolution of E

(1.112) 0→ E′ → G(−nr)⊕Nr
φ→ G(−nr−1)

⊕Nr−1 → · · · → G(−n0)
⊕N0 → E → 0.

If r ≥ dimX , then (1) implies that E′ is a local projective object. We set r := 2j0 + 1. We set G1 :=

E′ ⊕ ⊕j0j=0G(−n2j)
⊕N2j and G2 := ⊕j0j=0G(−n2j+1)

⊕N2j+1 Then G1 and G2 are local projective generators
and E = G1 −G2. We take a resolution

(1.113) 0→ G′
2 → G(−n)⊕N → G2 → 0

such that G′
2 ∈ C. Then we see that Rπ∗RHom(G′

2, F ) ∈ Coh(Y ) for any F ∈ C. Since E = (G1 ⊕G′
2) −

G(−n)⊕N and G1 ⊕G′
2 is a local projective generator, we get our claim. �

Definition 1.5.3. Let A be an element of K(Y )⊗ Q and G a local projective generator. A 0-dimensional
object E is (G,A)-twisted semi-stable, if

(1.114)
χ(A,F )

χ(G,F )
≤ χ(A,E)

χ(G,E)

for all proper subobject F of E.

By Lemma 1.5.2, we write N ′A = G′ − NG(−n) ∈ K(X), where G′ is a local projective generator and
n,N,N ′ > 0. Then

(1.115)
χ(G′, E)

χ(G,E)
= N ′ χ(A,E)

χ(G,E)
+N.

Hence E is (G,G′)-twisted semi-stable if and only if E is (G,A)-twisted semi-stable. Thus we get the
following proposition.

Proposition 1.5.4. Let A be an element of K(Y )⊗Q and G a local projective generator. Let v be a Mukai
vector of a 0-dimensional object.

(1) There is a coarse moduli scheme M
G,A

OX(1)(v) of (G,A)-twisted semi-stable objects of C.
(2) If v is primitive and A is general in K(Y ) ⊗ Q, then M

G,A

OX(1)(v) consists of (G,A)-twisted stable

objects. Moreover M
G,A

OX(1)(̺X) is a fine moduli space.

Remark 1.5.5. If v(E) = ̺X and rkA = 0, then E is (G,A)-twisted semi-stable if and only if χ(A,E′) ≤ 0
for all subobject E′ of E in C. Thus the semi-stability does not depend on the choice of G.

Remark 1.5.6. In subsection 1.7, we deal with the twisted sheaves. In this case, we still have the moduli

spaces of 0-dimensional stable objects, but M
G,A

OX(1)(̺X) does not have a universal family.

1.6. Construction of the moduli spaces of A-modules of dimension 0. By Proposition 1.1.3, we have
an equivalence C → CohA(Y ). We set B := π∗(G

∨⊗G′). Then B is a local projective generator of CohA(Y ):
For all F ∈ CohA(Y ), RHomA(B, F ) = HomA(B, F ) and RHomA(B, F ) = 0 if and only if F = 0. In
particular, we have a surjective morphism

(1.116) φ : HomA(B, F )⊗A B → F.

For F ∈ CohA(Y ), we set

(1.117) χA(B, F ) := χ(RHomA(B, F )).
For F ∈ CohA(Y ), π−1(F )⊗π−1(A) G is (G,G′)-twisted semi-stable, if

(1.118)
χA(B, F1)

χ(F1)
≤ χA(B, F )

χ(F )

for all proper sub A-module F1 of F . We define the (A,B)-twisted semi-stability by this inequality.

Proposition 1.6.1. There is a coarse moduli scheme of (A,B)-twisted semi-stable A-modules of dimension
0.
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Proof of Proposition 1.6.1. Let F be an A-module of dimension 0. Then HomA(B, F ) ⊗ B → F is

surjective. Hence all 0-dimensional objects F are parametrized by a quot-scheme Q := QuotA,mV⊗B/Y/C, where

m = χ(F ) and dimV = χA(B, F ). Let V ⊗OQ ⊗ B → F be the universal quotient. For simplicity, we set
Fq := F|{q}×Y , q ∈ Q. For a sufficiently large integer n, we have a quotient V ⊗H0(Y,B(n))→ H0(Y, F (n)).

We set W := H0(Y,B(n)). Then we have an embedding

(1.119) QuotA,mV⊗B/Y/C →֒ Gr(V ⊗W,m).

This embedding is equivariant with respect to the natural action of PGL(V ). The following is well-known.

Lemma 1.6.2. Let α : V ⊗W → U be a point of G := Gr(V ⊗W,m). Then α belongs to the set Gss of
semi-stable points if and only if

(1.120)
dimU

dimV
≤ dimα(V1 ⊗W )

dimV1
for all proper subspace V1 6= 0 of V . If the inequality is strict for all V1, then α is stable.

We set

(1.121) Qss := {q ∈ Q| Fq is (A,B)-twisted semi-stable }.
For q ∈ Qss, V → HomA(B, F ) is an isomorphism. We only prove that Qss = Gss ∩ Q. Then Proposition
1.6.1 easily follows.

For an A-submodule F1 of F , we set V1 := HomA(B, F1). Then we have a surjective homomorphism
V1 ⊗ B → F1. Conversely for a subspace V1 of V , we set F1 := im(V1 ⊗ B → F ). Then V1 → HomA(B, F1)
is injective.

We set

(1.122) F := {im(V1 ⊗ B → Fq)|q ∈ Q, V1 ⊂ V }.
Since F is bounded, we can take an integer n in the definition ofW such that V1⊗W → H0(Y, F1) is surjective
for all F1 ∈ F. Assume that Fq is (A,B)-twisted semi-stable. For any V1 ⊂ V , we set F1 := im(V1⊗B → Fq).
Then α(V1 ⊗W ) = H0(Y, F1). Hence

(1.123)
dimα(V1 ⊗W )

dim V1
≥ χ(F1)

dimHomA(B, F1)
=

χ(F1)

χA(B, F1)
≥ χ(Fq)
χA(B,Fq)

=
dimα(V ⊗W )

dimV
.

Thus q ∈ Gss.
We take a point q ∈ Gss ∩ Q. We first prove that ψ : V → HomA(B,Fq) is an isomorphism. We set

V1 := kerψ. Since V1 ⊗ B → Fq is 0, we get α(V1 ⊗W ) = 0. Then

(1.124)
dimU

dimV
≤ dimα(V1 ⊗W )

dimV1
= 0,

which is a contradiction. Therefore ψ is injective. Since dimV = dimHomA(B,Fq), ψ is an isomorphism.
Let F1 6= 0 be a proper A-submodule of Fq. We set V1 := HomA(B, F1). Then

(1.125)
χ(F1)

dimHomA(B, F1)
≥ dimα(V1 ⊗W )

dim V1
≥ dimα(V ⊗W )

dim V
=

χ(Fq)
χA(B,Fq)

.

Hence Fq is (A,B)-twisted semi-stable. If q is a stable point, then we also see that Fq is (A,B)-twisted
stable.

1.7. Twisted case.

1.7.1. Definition. Let X = ∪iXi be an analytic open covering of X and β = {βijk ∈ H0(Xi∩Xj∩Xk,O×
X)} a

Cech 2-cocycle of O×
X . We assume that β defines a torsion element [β] of H2(X,O×

X). Let E = ({Ei}, {ϕij})
be a coherent β-twisted sheaf:

(i) Ei is a coherent sheaf on Xi.
(ii) ϕij : Ei|Xi∩Xj

→ Ej|Xi∩Xj
is an isomorphism.

(iii) ϕji = ϕ−1
ij .

(iv) ϕki ◦ ϕjk ◦ ϕij = βijk idXi∩Xj∩Xk
.

Let G be a locally free β-twisted sheaf and P := P(G∨) the associated projective bundle over X (cf. [Y4,
sect. 1.1]). Let w(P ) ∈ H2(X,Z/rZ) be the characteristic class of P ([Y4, Defn. 1.2]). Then [β] is trivial if
and only if w(P ) ∈ im(NS(X)→ H2(X,Z/rZ)) ([Y4, Lem. 1.4]).

Let Cohβ(X) be the category of coherent β-twisted sheaves onX andDβ(X) the bounded derived category

of Cohβ(X). Let Kβ(X) be the Grothendieck group of Cohβ(X). Then similar statements in Lemma 1.1.5

hold for Cohβ(X). Then all results in sections 1.3 and 1.4 hold. In particular, if a locally free β-twisted sheaf
G defines a torsion pair, then we have the moduli of G-twisted semi-stable objects. Replacing ζ ∈ K(X) by
ζ ∈ Kβ(X) with c1(ζ) = r0H and χ(G⊗ ζ∨) = 0, Lemma 1.4.6 also holds.
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1.7.2. Chern character. We have a homomorphism

(1.126)
chG : Dβ(X) → Hev(X,Q)

E 7→ ch(G∨⊗E)√
ch(G∨⊗G)

.

Obviously chG(E) depends only on the class in Kβ(X). Since

(1.127) chG(E)∨ chG(F ) =
ch((G∨ ⊗ E)∨ ⊗ (G∨ ⊗ F ))

ch(G∨ ⊗G) = ch(E∨ ⊗ F ),

we have the following Riemann-Roch formula.

(1.128) χ(E,F ) =

∫

X

chG(E)∨ chG(F ) tdX .

Assume that X is a surface. For a torsion G-twisted sheaf E, we can attach the codimension 1 part of the
scheme-theoretic support Div(E) as in the usual sheaves. Then we see that

(1.129) chG(E) = (0, [Div(E)], a), a ∈ Q,

where [Div(E)] denotes the homology class of the divisor Div(E) and we regard it as an element of H2(X,Z)
by the Poincaré duality. More generally, if E ∈ Dβ(X) satisfies rkHi(E) = 0 for all i, then

(1.130) chG(E) = (0,
∑

i

(−1)i[Div(Hi(E))], a), a ∈ Q.

We set c1(E) :=
∑

i(−1)i[Div(Hi(E))].

Remark 1.7.1. If H3(X,Z) is torsion free, then we have an automorphism η of H∗(X,Q) such that the image
of η ◦ chG is contained in ch(K(X)) ⊂ Z ⊕ H2(X,Z) ⊕ H4(X, 12Z) and (1.128) holds if we replace chG by
η ◦ chG (cf. [Y4]): We first note that

(1.131) ch(K(X)) = {(r,D, a)|r ∈ Z, D ∈ H2(X,Z), a− (D,KX)/2 ∈ Z}.

Replacing the statement of [Y4, Lem. 3.1] by

c2(E
∨ ⊗ E) + r(r − 1)(w(E),KX)

≡− (r − 1)((w(E)2)− r(w(E),KX )) mod 2r,
(1.132)

we can prove a similar claim to [Y4, Lem. 3.3].

Lemma 1.7.2. Let E be a β-twisted sheaf of rkE = 0. Then

(1.133) [χ(G,E) mod rZ] ≡ −w(P ) ∩ [Div(E)],

where we identified H0(X,Z/rZ) with Z/rZ.

Proof. Since χ(G,E) and [Div(E))] are additive, it is sufficient to prove the claim for pure sheaves. If

dimE = 0 as an object of Cohβ(X), then r|χ(G,E) and Div(E) = 0. Hence the claim holds. We assume
that E is purely 1-dimensional. Then E is a twisted sheaf on C := Div(E). Since C is a curve, there is a
β-twisted line bundle L on C and we have an equivalence

(1.134)
ϕ : Cohβ(C) → Coh(C)

E 7→ E ⊗ L∨.

Then we can take a filtration 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = E of E such that Div(Fi/Fi−1) are reduced and
irreducible curve and Fi/Fi−1 are torsion free β-twisted sheaves of rank 1 on Div(Fi/Fi−1). Replacing E by
Fi/Fi−1, we may assume that E is a twisted sheaf of rank 1 on an irreducible and reduced curve C = Div(E).
Then χ(G,E) = χ(ϕ(G|C)

∨ ⊗ ϕ(E)) =
∫
C c1(ϕ(G|C)

∨) + rχ(ϕ(E)). Since w(P )|C = w(P|C) = c1(ϕ(G|C))
mod rZ, [χ(G,E) mod rZ] ≡ −w(P ) ∩ [C]. �

Corollary 1.7.3. For an object E of Dβ(X), assume that rkHi(E) = 0 for all i. Then

(1.135) [χ(G,E) mod rZ] ≡ −w(P ) ∩ [Div(E)].

Moreover if c1(E) = 0, then chG(E) ∈ Z̺X .

Proof. The second claim follows from
∫
X
chG(E) = χ(G,E)/r = (χ(G,E)/r)

∫
X
̺X . �

23



2. Perverse coherent sheaves for the resolution of rational double points.

2.1. Perverse coherent sheaves on the resolution of rational singularities. Let Y be a projective
normal surface with at worst rational singularities and π : X → Y the minimal resolution. Let pi, i =
1, 2, ..., n be the singular points of Y and Zi := π−1(pi) =

∑si
j=1 aijCij their fundamental cycles. Let β be a

2-cocycle of O×
X whose image in H2(X,O×

X) is a torsion element. For β-twisted line bundles Lij on Cij , we
shall define abelian categories Per(X/Y, {Lij}) and Per(X/Y, {Lij})∗.
Proposition 2.1.1. (1) There is a locally free sheaf E such that χ(E,Lij) = 0 for all i, j and R1π∗(E

∨⊗
E) = 0.

(2) C(E) is the tilting of Cohβ(X) with respect to the torsion pair (S, T ) such that

S :={E ∈ Cohβ(X)| E is generated by subsheaves of Lij },
T :={E ∈ Cohβ(X)|Hom(E,Lij) = 0}.

(2.1)

(3) C(E)∗ is the tilting of Cohβ(X) with respect to the torsion pair (S∗, T ∗) such that

S∗ :={E ∈ Cohβ(X)| E is generated by subsheaves of Api ⊗ ωZi
},

T ∗ :={E ∈ Cohβ(X)|Hom(E,Api ⊗ ωZi
) = 0}.

(2.2)

For the proof of (1), we shall use the deformation theory of a coherent twisted sheaf.

Definition 2.1.2. For a coherent β-twisted sheaf E on a schemeW , Def(W,E) denotes the local deformation
space of E fixing detE.

For a complex E ∈ Dβ(X), let

(2.3) Exti(E,E)0 := ker(Exti(E,E)
tr→ Hi(X,OX))

be the kernel of the trace map. If Ext2(E,E)0 = 0, then Def(W,E) is smooth and the Zariski tangent space
at E is Ext1(E,E)0. The following is well-known.

Lemma 2.1.3. Let D be a divisor on X. For E ∈ Cohβ(X) with rkE > 0, we have a torsion free β-twisted
sheaf E′ such that τ(E′) = τ(E) − nτ(Cx) and Ext2(E′, E′(D))0 = 0.

Proof. For a locally free β-twisted sheaf E, we consider a general surjective homomorphism φ : E → ⊕ni=1Cxi
,

xi ∈ X . If n is sufficiently large, then E′ := kerφ satisfies the claim. �

Lemma 2.1.4. Let C be an effective divisor on X. For (r,L) ∈ Z>0 × Pic(C), the moduli stack of locally
free sheaves E on C such that (rkE, detE) = (r,L) is irreducible.

Proof. For a locally free sheaf E on C we consider φ : H0(X,E(n)) ⊗ OC(−n) → E. Assume that φ is
surjective. Then there is a subvector space V ⊂ H0(X,E(n)) of dim V = r−1 such that ψ : V ⊗OC(−n)→ E
is injective for any point of C. Then cokerψ is a line bundle which is isomorphic to det(E)⊗OC((r − 1)n).
Hence E is parametrized an affine space Ext1OC

(L ⊗ OC((r − 1)n),OC(−n) ⊗ V ) = H1(C,L∨(−rn) ⊗ V ).
Since the surjectivity of φ is an open condition and φ is surjective for n≫ 0, we get our claim. �

Proof of Proposition 2.1.1. (1) For a locally free β-twisted sheaf G on X , we set gij := χ(G,Lij). Let α ∈
⊕ni=1 ⊕sij=1 Q[Cij ] be a Q-divisor such that rkG(α,Cij) = gij . We take a locally free sheaf A ∈ Coh(X) such

that c1(A)/ rkA = α. Then χ(G⊗A,Lij) = rkA(gij−rkG(α,Cij)) = 0 for all i, j. By Lemma 2.1.3, there is
a torsion free β-twisted sheaf E on X such that τ(E) = τ(G⊗A)−nτ(Cx) and Hom(E,E(KX +Cij))0 = 0
for all i, j. We consider the restriction morphism

(2.4) φij : Def(X,E)→ Def(Cij , E|Cij
).

Since Ext2(E,E(−Cij))0 = 0, we get Ext2(E,E)0 = 0. Thus Def(X,E) is smooth. We also have the
smoothness of Def(Cij , E|Cij

), by the locally freeness of E|Cij
. We consider the homomorphism of the

tangent spaces

(2.5) Ext1OX
(E,E)0 → Ext1OCij

(E|Cij
, E|Cij

)0.

Then it is surjective by Ext2(E,E(−Cij))0 = 0. Therefore φ is submersive. By the equivalence ϕ :

Cohβ(Cij) → Coh(Cij) in (1.134), we have an isomorphism Def(Cij , E|Cij
) → Def(Cij , ϕ(E|Cij

)). Since
χ(E,Lij) = 0, det(E|Cij

⊗ L∨
ij) = OCij

(rkE). Then Lemma 2.1.4 implies that E deforms to a β-twisted

sheaf such that E|Cij
∼= Lij(1)

⊕ rkE . Since these conditions are open condition, there is a locally free β-

twisted sheaf E such that E|Cij
∼= Lij(1)

⊕ rkE for all i, j. By taking the double dual of E and using Lemma
1.2.9, we get (1).

(2) Note that Lij = Api ⊗OCij
(−1). By Proposition 1.2.19 and Proposition 1.1.19, we get the claim. For

(3), we use Proposition 1.2.21 and Proposition 1.1.19. �
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Definition 2.1.5. (1) We set Per(X/Y, {Lij}) := C(E) and Per(X/Y, {Lij})∗ := C(E)∗.
(2) If β is trivial, then we can write Lij = OCij

(bij). In this case, we set Per(X/Y,b1, . . . ,bn) :=
Per(X/Y, {Lij}) and Per(X/Y,b1, . . . ,bn)

∗ := Per(X/Y, {Lij})∗, where bi := (bi1, bi2, . . . , bisi).

Remark 2.1.6. If bi(0) = (−1,−1, . . . ,−1), then Per(X/Y,b1(0), ...,bn(0)) =
−1 Per(X/Y ).

Definition 2.1.7. We set

A0(bi) :=Api ,

A0(bi)
∗ :=Api ⊗ ωZi

.
(2.6)

We collect easy facts on A0(bi) and A0(bi)
∗ which follow from Lemma 1.2.18 and Lemma 1.2.22.

Lemma 2.1.8. (1) (a) For E = A0(bi), we have

Hom(E,OCij
(bij)) = Ext1(E,OCij

(bij)) = 0, 1 ≤ j ≤ si(2.7)

and there is an exact sequence

(2.8) 0 −−−−→ F −−−−→ E −−−−→ Cx −−−−→ 0

such that F is a successive extension of OCij
(bij) and x ∈ Zi.

(b) Conversely if E satisfies these conditions, then E ∼= A0(bi).
(2) (a) For E = A0(bi)

∗, we have

Hom(OCij
(bij), E) = Ext1(OCij

(bij), E) = 0, 1 ≤ j ≤ si(2.9)

and there is an exact sequence

(2.10) 0 −−−−→ E −−−−→ F −−−−→ Cx −−−−→ 0

such that F is a successive extension of OCij
(bij) and x ∈ Zi.

(b) Conversely if E satisfies these conditions, then E ∼= A0(bi)
∗.

2.2. Moduli spaces of 0-dimensional objects. Let π : X → Y be the minimal resolution of a normal
projective surface Y and p1, p2, . . . , pn the rational double points of Y as in 2.1. We set Z := ∪iZi. Let
G be a locally free sheaf on X which is a tilting generator of the category C := CG in Lemma 1.1.5.
For α ∈ NS(X) ⊗ Q, we define α-twisted semi-stability as γ−1((0, α, 0))-twisted stability, where γ is the
homomorphism (0.2). In this subsection, we shall study the moduli of α-twisted semi-stable objects. For

simplicity, we say that α-twisted semi-stability as α-semi-stability. For simplicity, we set Xα :=M
G,α

OX(1)(̺X).

Since every 0-dimensional object is 0-semi-stable, we have a natural morphism πα : Xα → X0.

Lemma 2.2.1. For a 0-dimensional object E of C, there is a proper subspace T (E) of Ext2(E,E) such that
all obstructions for infinitesimal deformations of E belong to T (E).

Proof. Let E be a 0-dimensional object of C. We first assume that there is a curve C ∈ |KX | such that
C ∩ Supp(E) = ∅. Then H0(X,KX)→ Hom(E,E(KX)) is non-trivial, which implies that the trace map

(2.11) tr : Ext2(E,E)→ H2(X,OX),

is non-trivial. Since the obstruction for infinitesimal deformations of E lives in ker tr, T (E) ⊂ ker tr is a
proper subspace of Ext2(E,E). For a general case, we use the covering trick. Let D be a very ample divisor
on Y such that there is a smooth curve B ∈ |2D| with B ∩ π(Supp(E) ∪ Z) = ∅ and |KY +D| contains a
curve C with C ∩ π(Supp(E) ∪ Z) = ∅. Since π is isomorphic over Y \ π(Z), we may regard B and C as

divisors on X . Let φ : Ỹ → Y be the double covering branced along B and set X̃ = X ×Y Ỹ . We also

denote X̃ → X by φ. Then |KX̃ | = |φ∗(KX +D)| contains φ∗(C). Since φ is étale over Y \ B, we have a

decomposition π∗(E) = E1 ⊕ E2 and Ext2(E,E)→ Ext2(Ei, Ei) are isomorphism for i = 1, 2. Under these

isomorphisms, T (E) is mapped into T (Ei). Since tri : Ext
2(Ei, Ei)→ H2(X̃,OX̃) are non-trivial, ker tri are

proper subspaces of Ext2(Ei, Ei). Hence T (E) is a proper subspace of Ext2(E,E). �

Proposition 2.2.2. (1) For a 0-dimensional object E of C, E⊗KX
∼= E. In particular, Ext2(E,E) ∼=

Hom(E,E)∨.

(2) For a 0-dimensional Mukai vector v, MG,α
OX(1)(v) is smooth of dimension 〈v2〉+ 2.

Proof. (1) Since KX = π∗(KY ) and dimπ(Supp(E)) = 0, we get E ⊗ KX
∼= E. (2) For E ∈ MG,α

OX(1)(v),

we have Hom(E,E) = C. Then Lemma 2.2.1 implies that T (E) = 0. Since dimExt1(E,E) = 〈v2〉 + 2,

MG,α
OX(1)(v) is smooth of dimension 〈v2〉+ 2. �

Remark 2.2.3. There is another argument to prove the smoothness due to Bridgeland [Br1]. We shall use
the argument later. So for stable objects, we do not need Lemma 2.2.1, but it is necessary for the study of
properly semi-stable objects (see Proposition 2.2.7).
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Lemma 2.2.4. Assume that α ∈ NS(X)⊗Q satisfies that

(2.12) (α,D) 6= 0 for all D ∈ NS(X) with (D2) = −2 and (c1(OX(1)), D) = 0.

Then Xα =MG,α
OX(1)(̺X).

Proof. Assume that E ∈ Xα is S-equivalent to ⊕ti=1Ei, where Ei are α-stable objects. Then (α, c1(Ei)) = 0,
(c1(OX(1)), c1(Ei)) = 0 and (c1(Ei)

2) = 〈v(Ei)2〉 ≥ −2 for all i. Since 〈v(Ei), v(Ej)〉 ≥ 0 for Ei 6∼= Ej and∑
i,j〈v(Ei), v(Ej)〉 = 〈v(E)2〉 = 0, (i) 〈v(Ei)2〉 = −2 for an i, or (ii) 〈v(Ei)2〉 = 0 for all i. By our choice of

α, the case (i) does not occur. In the second case, we see that v(Ei) = ai̺X , ai > 0. Then ̺X = (
∑

i ai)̺X ,
which implies t = 1. Therefore E is α-stable. �

Lemma 2.2.5. Let E be an object of D(X × X ′) such that ΦE∨

X→X′ : D(X) → D(X ′) is an equivalence,
E|X×{x′} ∈ C for all x′ ∈ X ′ and v(E|X×{x′}) = ̺X . Then every irreducible object of C appears as a direct
summand of the S-equivalence class of E|X×{x′}.

Proof. Let E be an irreducible object of C. If Supp(E) 6⊂ Z, then we have a non-trivial morphism
E → Cx, x 6∈ Z. Since (C)|X\Z = Coh(X \ Z), Cx is an irreducible object. Hence E ∼= Cx. Since

χ(E|X×{x′},Cx) = 0 and ΦE∨

X→X′ is an equivalence, there is a point x′ ∈ X ′ such that Hom(E|X×{x′},Cx) 6= 0
or Hom(Cx, E|X×{x′}) 6= 0. Since v(Cx) = v(E|X×{x′}) = ̺X , we get Cx ∼= E|X×{x′}. If Supp(E) ⊂ ∪iZi,
then we still have χ(E|X×{x′}, E) = 0, since E|X×{x′} = Cx, x 6∈ Z for a point x′ ∈ X ′. Then we have
Hom(E|X×{x′}, E) 6= 0 or Hom(E, E|X×{x′}) 6= 0. Therefore our claim holds. �

Lemma 2.2.6. If α is general, then Xα is irreducible.

Proof. Let X ′ be a connected component of Xα. Then we have an equivalence ΦE∨

X→X′ : D(X) → D(X ′),
where E is the universal family. By the same argument as in the proof of Lemma 2.2.5, we see that every
E ∈ Xα belongs to X ′. �

Proposition 2.2.7. Let X 0 be the moduli stack of 0-semi-stable objects E with v(E) = ρX . Then X 0 is a
locally complete intersection stack of dimension 1 and irreducible. In particlar X 0 is a reduced stack.

Proof. Let Q be an open subscheme of a perverse quot-scheme such that X0 is a GIT-quotient of a suitable
GL(N)-action. Then X 0 is the quotient stack [Q/GL(N)]. Let E be the family of 0-dimensional objects
of C on Q × X . For any point q ∈ Q, we set n1 := dimHom(Kq, Eq) and n2 := dimT (Eq), where K is the
universal subobject on Q ×X . Then an analytic neighborhood of Q is an intersection of n2 hypersurfaces
in Cn1 . Hence dimQ ≥ n1 − n2 and dim[Q/GL(N)] ≥ −χ(Eq, Eq) + 1 = 1. We take a general α and set
Qu := {q ∈ Q| Eq is not α-semi-stable }. By the proof of [O-Y, Prop. 2.16], we see that dim[Qu/GL(N)] = 0.
Since [(Q \ Qu)/GL(N)] is the moduli stack of α-stable objects, it is a smooth and irreducible stack of
dimension 1. Hence [Q/GL(N)] is a locally complete intersection stack of dimension 1 and irreducible. In
particlar [Q/GL(N)] is a reduced stack. �

Lemma 2.2.8. Let E be a 0-semi-stable object with v(E) = ̺X . Then Supp(π∗(G
∨ ⊗ E)) is a point of Y .

Proof. For E, we have a decomposition E = ⊕ti=1Ei such that Supp(π∗(G
∨ ⊗ Ei)), i = 1, ..., t are distinct t

points of Y . We set v(Ei) = (0, Di, ai). SinceDi are contained in the exceptional loci, 0 = 〈v(E)2〉 = ∑
i(D

2
i )

implies that (D2
i ) = 0 for all i. Thus we have v(Ei) = ai̺X for all i, which implies that ̺X = (

∑
i ai)̺X .

Since χ(G,Ei) > 0, we have ai > 0. Therefore t = 1. �

By Lemma 1.1.13, we get the following.

Lemma 2.2.9. (1) Cx ∈ C for all x ∈ X. In particular, we have a morphism ϕ : X → X0 by sending
x ∈ X to the S-equivalence class of Cx.

(2) ϕ(Zi) is a point.

If Cx is properly 0-semi-stable, then Cx is S-equivalent to ⊕jE
⊕a′ij
ij for an i.

Proposition 2.2.10. There is an isomorphism ψ : X0 → Y such that ψ ◦ ϕ : X → Y coincides with π. In
particular, X0 is a normal projective surface.

Proof. We keep the notation in the proof of Proposition 2.2.7. By Lemma 2.2.8, F := π∗(G
∨ ⊗ E) is a flat

family of coherent sheaves on Y such that Supp(Fq) is a point for every q ∈ Q. Since the characteristic of
the base field is zero, we have a morphism Q → SrY , where r = rkG (cf. [F1], [F2]). Since the image is
contained in the diagonal Y , we have a morphism Q→ Y . Hence we have a morphsim ψ : X0 → Y . By the
construction of ϕ and ψ, π = ψ ◦ ϕ. Since ϕ and ψ are projective birational morphisms between irreducible
surfaces, ϕ and ψ are contractions. By using Lemma 2.2.9, we see that ψ is injective. Hence ψ is a finite
morphism. Since Y is normal, ψ is an isomorphism. �
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Lemma 2.2.11. Assume that α ∈ NS(X)⊗Q satisfies (2.12). Then KXα is the pull-back of a line bundle
on X0.

Proof. Let E be the universal family on Xα×X . Let pS : S×X → S be the projection. Since Xα is smooth,
the base change theorem implies that ExtipXα

(E , E), i = 0, 1, 2 are locally free sheaves on Xα and compatible

with base changes. Since Ext1pXα
(E , E) is the tangent bundle of Xα, we show that there is a symplectic form

on Ext1pXα
(E , E). For any point y ∈ Y , we take a very ample divisor D2 on Y such that y 6∈ D2, |KY +D2|

contains a divisor D1 with y 6∈ D1. We set U := Y \ (D1 ∪D2). Then U is an open neighborhood of y such

that KY is trivial over U . Let D̃i be the pull-back of Di to X . Then we have KX = OX(D̃1 − D̃2). We set
V := π−1

α (ψ−1(U)). We shall prove that (i) the alternating pairing

(2.13) Ext1pV (E , E)× Ext1pV (E , E)→ Ext2pV (E , E)
is non-degenerate and (ii) Ext2pV (E , E) ∼= OV . Since Ext1pXα (E , E) is the tangent bundle, this means that
KV
∼= OV . Thus the claim holds.

We first note that there are isomorphisms

(2.14) ExtipV (E , E) ∼= ExtipV (E , E(D̃1)) ∼= ExtipV (E , E(D̃1 − D̃2)), i = 0, 1, 2,

which is compatible with the base change. By the Serre duality, the trace map tr : Ext2(Ey, Ey(KX)) →
H2(X,KX) is an isomorphism for y ∈ V . Hence (ii) holds. By the Serre duality, the pairing Ext1(Ey, Ey)×
Ext1(Ey, Ey(KX))→ Ext2(Ey, Ey(KX)) ∼= H2(X,KX) is non-degenerate. Combining this with (2.14), we get
(i). �

Lemma 2.2.12. Assume that α = 0.

(1) Assume that pi ∈ Y corresponds to
⊕si

j=0 E
⊕aij
ij via ψ, where Eij are 0-stable objects. Then Cx, x ∈

Zi are S-equivalent to
⊕si

j=0 E
⊕aij
ij .

(2) Let E ∈ C be a 0-twisted stable object. Then E is one of the following:

(2.15) Cx (x ∈ X \ Z), Eij , (1 ≤ i ≤ n, 0 ≤ j ≤ si).
(3) Every 0-dimensional object is generated by (2.15).

Proof. By Proposition 2.2.10, (1) holds. We shall apply Lemma 2.2.5 to E = O∆ ∈ D(X ×X). Then (2) is
a consequence of (1). It also follows from Lemma 1.1.13 (3). (3) follows from (2). �

Remark 2.2.13. If b = b0, then π∗(E) is a flat family of coherent sheaves on Y such that π(E)q is a point
sheaf. Then we have a morphism Q→ Y . Thus we do not need the reducedness of Q in this case.

Definition 2.2.14. We set Zαi := π−1
α (

⊕
j E

⊕aij
ij ) = π−1

α ◦ ψ−1(pi) and Z
α := ∪iZαi .

Lemma 2.2.15. (cf. [O-Y, Lem. 2.4]) Let Eij be 0-stable objects in Lemma 2.2.12. Assume that −(α, c1(Eij)) >
0 for all j > 0. Let F be a 0-semi-stable object such that v(F ) = v(Ei0 ⊕

⊕
j>0E

⊕bj
ij ), 0 ≤ bj ≤ aij.

(1) If v(F ) 6= ̺X , then F is S-equivalent to Ei0 ⊕
⊕

j>0 E
⊕bj
ij with respect to 0-stability.

(2) Assume that F is S-equivalent to Ei0 ⊕
⊕

j>0 E
⊕bj
ij . Then the following conditions are equivalent.

(a) F is α-stable
(b) F is α-semi-stable
(c) Hom(Eij , F ) = 0 for all j > 0.

(3) Assume that F is α-stable. For a non-zero homomorphism φ : F → Eij , j > 0, φ is surjective and
F ′ := kerφ is an α-stable object.

(4) If there is a non-trivial extension

(2.16) 0→ F → F ′′ → Eij → 0

and bk + δjk ≤ aik, then F ′′ is an α-stable object, where δjk = 0, 1 according as j 6= k, j = k.

Proof. (1) Since E := F⊕⊕j>0E
⊕(aij−bj)
ij is a 0-semi-stable object with v(E) = ̺X and Supp(π∗(G

∨⊗E)) =

Supp(π∗(G
∨ ⊗ F )) ∪ {pi}, Lemma 2.2.8 and Proposition 2.2.10 imply that the S-equivalence class of E

corresponds to pi ∈ Y . Hence E is S-equivalent to
⊕

j≥0 E
⊕aij
ij , which implies that F is S-equivalent to

Ei0 ⊕
⊕

j>0E
⊕bj
ij .

(2) It is sufficient to prove that (c) implies (a). Let ψ : F → I be a quotient of F . Since I and kerψ are
0-dimensional objects, they are 0-semi-stable. Since Hom(Eij , kerψ) = 0 for j > 0, (1) implies that Ei0 is a
subobject of kerψ. Hence v(I) =

∑
j>0 b

′
jvij , which implies that F is α-stable.

(3) Since Eij is irreducible, φ is surjective. By (1), kerφ also satisfies the assumption of (2). Let
ψ : kerφ→ I be a quotient object. Since Hom(Eik, F ) = 0 for k > 0, (2) implies that kerφ is α-stable.
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(4) Since v(F ) 6= ̺X , (1) implies that F ′′ satisfies the assumption of (2). If Hom(Eik, F
′′) 6= 0, then

Hom(Eik, F ) = 0 implies that k = j and we have a splitting of the exact sequence. Hence Hom(Eik, F
′′) = 0

for k > 0. Then (2) implies the claim. �

Corollary 2.2.16. Assume that −(α, c1(Eij)) > 0 for all j > 0. We set v := v(Ei0 ⊕⊕j>0E
⊕bj
ij ), 0 ≤ bj ≤

aij with 〈v2〉 = −2.
(1) dimHom(E,Eij) = max{−〈v, v(Eij)〉, 0}.
(2) If −〈v, v(Eij)〉 > 0, then MG,α

OX(1)(v)
∼=MG,α

OX(1)(w), where w = v + 〈v, v(Eij)〉v(Eij).

Proof. (1) For E ∈MG,α
OX(1)(v), we set n := dimHom(E,Eij). Then we have a surjective morphism φ : E →

E⊕n
ij . Then F := kerφ is α-stable. Since −2 ≤ 〈v(F )2〉 = 〈v(E)2〉 − 2n(n+ 〈v, v(Eij)〉), n = −〈v, v(Eij)〉 or

n = 0.
(2) If −〈v, v(Eij)〉 > 0, then dimHom(E,Eij) = −〈v, v(Eij)〉, Extp(E,Eij) = 0, p > 0, and we have a

morphism σ : MG,α
OX(1)(v)→ MG,α

OX(1)(w). Conversely for F ∈ MG,α
OX(1)(w), 〈v(F ), v(Eij )〉 = −〈v, v(Eij)〉 > 0.

Hence Hom(F,Eij) = 0, which implies that dimExt1(Eij , F ) = 〈v(F ), v(Eij)〉 and the universal extension
gives an α-stable object E with v(E) = v. Therefore we also have the inverse of σ. �

We come to the main result of this subsection.

Theorem 2.2.17. (cf. [O-Y, Thm. 0.1])

(1) X0 ∼= Y and the singular points p1, p2, . . . , pn of X0 correspond to the S-equivalence classes of
properly 0-twisted semi-stable objects.

(2) Assume that α satisfies that (α,D) 6= 0 for all D ∈ NS(X) with (D2) = −2 and (c1(OX(1)), D) = 0.

Then Xα =MG,α
OX(1)(̺X). In particular πα : Xα → X0 is the minimal resolution of the singularities.

(3) Let ⊕sij=0E
⊕aij
ij be the S-equivalence class corresponding to pi. Then the matrix (−〈v(Eij), v(Eik)〉)j,k≥0

is of affine type Ã, D̃, Ẽ. Assume that ai0 = 1. Then the singularity of X0 at pi is a rational double
point of type A,D,E according as the type of the matrix (−〈v(Eij), v(Eik)〉)j,k≥1.

Proof. (1) By Proposition 2.2.10, X0 ∼= Y . Since ϕ : X → X0 is surjective, y ∈ Y corresponds to the
S-equivalence class of Cx, x ∈ π−1(y). By Lemma 2.2.9, Cx, x ∈ π−1(pi) is not irreducible. Hence pi
corresponds to a properly 0-semi-stable objects. For a smooth point y ∈ Y , Cx, x ∈ π−1(y) is irreducible.
Therefore the second claim also holds. (2) is a consequence of Proposition 2.2.2 and Lemma 2.2.11.

(3) We note that

〈̺X , v(Eij)〉 = 0,

〈v(Eij), v(Eij)〉 = −2,
〈v(Eij), v(Ekl)〉 ≥ 0, (Eij 6= Ekl).

(2.17)

As we see in Example 6.1.2 in appendix, we can apply Lemma 6.1.1 (1) to our situation. Hence the matrix

(−〈v(Eij), v(Eik)〉)j,k≥0 is of affine type Ã, D̃, Ẽ. Then we may assume that ai0 = 1 for all i. By Lemma
6.1.1 (2), we can choose an α with −〈v(Eij), α〉 > 0 for all j > 0. Let Eα be the universal family on X×Xα.
(3) is a consequence of the following lemma. �

Lemma 2.2.18. Assume that α satisfies −〈v(Eij), α〉 > 0 for all j > 0.

(1) We set

(2.18) Cαij := {xα ∈ Xα|Hom(E|X×{xα}, Eij) 6= 0}, j > 0.

Then Cαij is a smooth rational curve.

(2)

Zαi ={xα ∈ Xα|Hom(Ei0, E|X×{xα}) 6= 0} = ∪jCαij .(2.19)

(3) ∪jCαij is simple normal crossing and (Cαij , C
α
ik) = 〈v(Eij), v(Eik)〉.

Proof. (1) By our choice of α, Hom(Eij , E|X×{xα}) = 0 for all xα ∈ Xα. If Cαij = ∅, then χ(Eij , E|X×{xα}) = 0

implies that Hom(E|X×{xα}, Eij) = Ext1(E|X×{xα}, Eij) = 0. Then ΦE∨

X→Xα(Eij) = 0, which is a contra-
diction. Therefore Cαij 6= ∅. In order to prove the smoothness, we consider the moduli space of coherent
systems

(2.20) N(̺X , v(Eij)) := {(E, V )|E ∈ Xα, V ⊂ Hom(E,Eij), dimC V = 1}.
We have a natural projection ι : N(̺X , v(Eij)) → Xα whose image is Cαij . For (E, V ) ∈ N(̺X , v(Eij)), we

have a homomorphism ξ : E → Eij⊗V ∨. The Zariski tangent space at (E, V ) is Hom(E,E → Eij⊗V ∨). By
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Lemma 2.2.15 (3), ξ is surjective and ker ξ ∈MG,α
OX(1)(̺X − v(Eij)). In particular Hom(E,E → Eij ⊗ V ∨) ∼=

Ext1(E, ker ξ). Conversely for F ∈MG,α
OX(1)(̺X − v(Eij)) and a non-trivial extension

(2.21) 0→ F → E → Eij → 0,

Lemma 2.2.15 (4) implies that E ∈ Xα and E → Eij defines an element of N(̺X , v(Eij)). By Corollary

2.2.16 (1) and our choice of α, Hom(F,Eij) = Hom(Eij , F ) = 0. Hence dimExt1(Eij , F ) = 2. Since

MG,α
OX(1)(̺X − v(Eij)) is a reduced one point, we see that N(̺X , v(Eij)) is isomorphic to P1. We show

that ι : N(̺X , v(Eij)) → Xα is a closed immersion. For (E, V ) ∈ N(̺X , v(Eij)), dimHom(E,Eij) =

dimHom(ker ξ, Eij) + 1 = 1. Hence ι is injective. We also see that ι∗ : Ext1(E, ker ξ) → Ext1(E,E) is
injective. Therefore ι is a closed immersion.

(2) By our choice of α, Hom(Ei0, E|X×{xα}) 6= 0 for xα ∈ Zαi . Conversely if Hom(Ei0, E|X×{xα}) 6= 0, then
Lemma 2.2.8 implies that Supp(π∗(G

∨ ⊗ E|X×{xα})) = {pi}. Since Supp(π∗(G
∨ ⊗ E|X×{xα})) depends only

on the S-equivalence class of E|X×{xα}, we have ψ(πα(x
α)) = pi. Thus x

α ∈ Zαi . Therefore we have the first
equality. By the choice of α, we also get Zαi ⊂ ∪jCαij . If Hom(E|X×{xα}, Eij) 6= 0, j > 0, then we see that
Supp(π∗(G

∨ ⊗ E|X×{xα})) = {pi}, which implies that xα ∈ Zαi . Thus the second claim also holds.

(3) Since (−〈v(Eij), v(Eik)〉)j,k≥1 is ofADE-type, by using Corollary 2.2.16, we can show thatMG,α
OX(1)(v)

∼=
MG,α

OX(1)(v(Ei0)) for v = v(Ei0⊕⊕j>0E
⊕bj
ij ), 0 ≤ bj ≤ aij with 〈v2〉 = −2. In particular, they are non-empty.

Then by a similar arguments in [O-Y, Prop. 2.9], we can also show that ∪jCαij is simple normal crossing and
(Cαij , C

α
ik) = 〈v(Eij), v(Eik)〉. For another proof, see Corollary 2.3.12. �

2.3. Fourier-Mukai transforms on X. We keep the notations in subsection 2.2. Assume that Xα consists

of α-stable objects. Let Eα be a universal family on X ×Xα. We have an equivalence Φ
(Eα)∨

X→Xα : D(X) →
D(Xα). If Fα be another universal family, then we see that

(2.22) Φ
(Eα)∨

X→Xα ◦ ΦFα

Xα→X = Φ
O∆(L)
Xα→Xα [−2], L ∈ Pic(Xα).

Let Γα be the closure of the graph of the rational map π−1
α ◦ π:

(2.23)

Γα −−−−→ Xα

y
yπα

X −−−−→
π

Y.

Lemma 2.3.1. (1) We may assume that Eα|X×(Xα\Zα)
∼= OΓα|X×(Xα\Zα).

(2) Eα is characterized by Eα|X×(Xα\Zα) and detΦ
(Eα)∨

X→Xα(G).

Proof. (1) We note that Eα|X×(Xα\Zα)
∼= (OΓα ⊗ p∗Xα(L))|X×(Xα\Zα), where L ∈ Pic(Xα \ Zα). We also

denote an extension of L to Xα by L. Then Eα ⊗ p∗Xα(L∨) is a desired universal family.

(2) Assume that Eα|X×(Xα\Zα)
∼= (Eα ⊗ p∗Xα(L))|X×(Xα\Zα) and det Φ

(Eα)∨

X→Xα(G) ∼= detΦ
(Eα⊗p∗Xα (L))∨

X→Xα (G).

Then L|Xα\Zα
∼= OXα\Zα and L⊗ rkG ∼= OXα . In order to prove L ∼= OXα , it is sufficient to prove the

injectivity of the restriction map

(2.24) r : Pic(Xα)→ Pic(Xα \ Zα)×
∏

i,j

Pic(Cαij).

If L|Xα\Zα
∼= OXα\Zα , then we can write L = OX(

∑
i,j rijC

α
ij). Since the intersection matrix ((Cαij , C

α
ik))j,k

is negative definite, deg(L|Cα
ij
) =

∑
k rik(C

α
ik, C

α
ij) = 0 for all i, j implies that rij = 0 for all i, j. Thus r is

injective. �

Definition 2.3.2. We set Λα := Φ
(Eα)∨

X→Xα [2].

Lemma 2.3.3. OX(n)⊗ and Λα are commutative.

Proof. Let D be an effective divisor on X such that D ∩ Z = ∅. It is sufficient to prove that

(2.25) Eα ⊗ (OX(−D)⊠OXα(D)) ∼= Eα.
We note that Eα ∼= OΓα over Xα \ Zα. Obviously the claim holds over Xα \ Zα. By Lemma 2.3.1, we shall
show that detΛα(G(D)) ∼= det(Λα(G)(D)). We have an exact triangle

(2.26) (Eα)∨ → (Eα)∨(D)→ (Eα)∨|D(D)→ (Eα)∨[1].
Since (Eα)∨|D(D) ∼= O∆|D(D)[−2], we have an exact triangle

(2.27) Λα(G)→ Λα(G(D))→ G|D(D)→ Λα(G)[1].

Hence we get detΛα(G(D)) ∼= (detΛα(G))((rkG)D) ∼= det(Λα(G)(D)). �
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Proposition 2.3.4. (1) Gα := Λα(G) is a locally free sheaf and Rπα∗(G
α∨ ⊗Gα) = πα∗(G

α∨ ⊗Gα).
(2) Λα(Eij)[j] is a sheaf, where j = −1 or 0 according as (α, c1(Eij)) < 0 or (α, c1(Eij)) > 0.
(3) We set Aα := πα∗(G

α∨ ⊗ Gα). Then Aα is a reflexive sheaf on Y . Under the identification
Xα \ Zα ∼= X \ Z, Gα|Xα\Zα corresponds to G|X\Z . Hence we have an isomorphism A ∼= Aα.

(4) We identify CohA(Y ) with CohAα(Y ) via A ∼= Aα. Then we have a commutative diagram

(2.28)

C Λα

−−−−→ Λα(C)
Rπ∗Hom(G, )

y
yRπα∗Hom(Gα, )

CohA(Y ) CohAα(Y )

In particular Gα gives a local projective generator of Λα(C).
(5) We set

Sα :={Λα(Eij)[−1]|i, j} ∩ Coh(Xα),

T α :={E ∈ Coh(Xα)|Hom(E, c) = 0, c ∈ Sα},
Sα :={E ∈ Coh(Xα)| E is a successive extension of subsheaves of c ∈ Sα }.

(2.29)

Then (T α,Sα) is a torsion pair of Coh(Xα) and Λα(C) is the tilting of Coh(Xα) with respect to
(T α,Sα).

(6) Let G′ be a local projective generator of C. Then Λα induces an isomorphismMG′

H (v)ss →MΛα(G′)
H (Λα(v))ss.

Proof. (1) We note that Hom(Eα|X×{xα}, G[i])
∼= Hom(G, Eα|X×{xα}[2 − i])∨ = 0 for i 6= 2 and xα ∈ Xα. By

the base change theorem, Gα is a locally free sheaf. By using Lemma 2.3.3 and the ampleness of OY (1), we
have

H0(Y,Riπα∗(G
α∨ ⊗Gα)(n)) =Hom(Λα(G),Λα(G)(n)[i])

=Hom(Λα(G),Λα(G(n))[i])

=Hom(G,G(n)[i]) = H0(Y,Riπ∗(G
∨ ⊗G)(n)) = 0

(2.30)

for n≫ 0 and i 6= 0. Therefore Riπ∗(G
α∨ ⊗Gα) = 0, i 6= 0 and the claim holds.

(2) If (α, c1(Eij)) < 0, then Hom(Eα|X×{xα}, Eij [2])
∼= Hom(Eij , Eα|X×{xα})

∨ = 0 for xα ∈ Xα. Since

Hom(EαX×|{xα}, Eij) = 0 if xα 6∈ Zαi , we see that Λα(Eij)[−1] is a torsion sheaf whose support is contained

in Zαi .
If (α, c1(Eij)) > 0, then Hom(Eα|X×{xα}, Eij) = 0 for xα ∈ Xα. Since Hom(Eα|X×{xα}, Eij [2]) = 0 if

xα 6∈ Zαi , we see that Λα(Eij) is a torsion sheaf whose support is contained in Zαi .
(3) By the claim (1) and [E, Lem. 2.1], Aα is a reflexive sheaf. Since Eα is isomorphic to OΓα over

Xα \ Zα, we get Λα(G)|Xα\Zα
∼= π−1

α ◦ π(G|X\Z). Hence the second claim also follows.

(4) For E ∈ C, we first prove that Rπ∗(G
α∨ ⊗ Λα(E)) ∈ CohAα(Y ). As in the proof of (1), we have

Hi(Y,Rπ∗(G
α∨ ⊗ Λα(E))(n)) =Hom(Gα,Λα(E)(n)[i])

=Hom(G,E(n)[i]) = 0
(2.31)

for i 6= 0, n≫ 0. Therefore Hi(Rπ∗(G
α∨ ⊗ Λα(E))) = 0 for i 6= 0. For E ∈ C, we take an exact sequence

(2.32) G(−m)⊕M → G(−n)⊕N → E → 0

Then we have a diagram

(2.33)

A(−m)⊕M −−−−→ A(−n)⊕N −−−−→ π∗(G
∨ ⊗ E) −−−−→ 0

φ

y
yψ

Aα(−m)⊕M −−−−→ Aα(−n)⊕N −−−−→ π∗(G
α∨ ⊗ Λα(E)) −−−−→ 0

which is commutative over Y ∗ := Y \ {p1, p2, . . . , pn}, where φ and ψ are the isomorphisms induced by
A ∼= Aα. Let j : Y ∗ →֒ Y be the inclusion. Since Hom(A,Aα) → j∗j

∗Hom(A,Aα) is an isomorphism,
(2.33) is commutative, which induces an isomorphism ξ : π∗(G

∨ ⊗E)→ π∗(G
α∨ ⊗Λα(E)). It is easy to see

that the construction of ξ is functorial and defines an isomorphism Rπ∗Hom(G, ) ∼= Rπ∗Hom(Gα, ) ◦Λα.
(5) Since Λα is an equivalence, Λα(Eij) are irreducible objects of Λ

α(C). By Lemma 1.1.7 and Proposition
1.1.19, we get the claim.

(6) We note that the proof of (1) implies that Λα(G′) is a local projective generator of Λα(C). By Lemma
2.3.3, χ(G′, E(n)) = χ(Λα(G′),Λα(E)(n)). Hence the claim holds. �
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Remark 2.3.5. If C =−1 Per(X/Y ), then OX ∈−1 Per(X/Y ) and Λα(OX) is a line bundle on Xα. Hence we
may assume that Λα(OX) ∼= OXα . Then Hom(OXα ,Λα(OCij

(−1))[n]) = 0 for all n. Thus Λα(OCij
(−1))[n]

is a successive extensions of OCik
(−1). We also get Hom(OXα ,Λα(OZi

)) = C and Hom(OXα ,Λα(OZi
)[n]) =

0 for n 6= 0.

Since Λα is an equivalence with Λα(̺X) = ̺Xα , we have the following corollary.

Corollary 2.3.6. For a general α, the equivalence

Λα : C → Λα(C)

induces an isomorphism:

Λα :MG,β
OX(1)(̺X)ss →MGα,Λα(β)

OXα (1) (̺Xα)ss,

where β ∈ ̺⊥X .

2.3.1. Wall and chambers. For the 0-stable objects Eij in Theorem 2.2.17, we set vij := v(Eij). By Lemma
2.2.5, {Eij} is the set of irreducible objects E with Supp(E) ⊂ ∪iZi. Let gi be the finite Lie algebra whose
Cartan matrix is (−〈vij , vik〉j,k≥1) and

(2.34) Ri :=



u =

∑

j>0

n′
ijvij

∣∣∣∣∣∣
〈u2〉 = −2, n′

ij ≥ 0



 .

Then Ri is identified with the set of positive roots of gi. In particular, Ri is a finite set.

Definition 2.3.7. For u ∈ ∪iRi, we define the wall as

(2.35) Wu :=

{
α ∈ NS(X)⊗ R

∣∣∣∣
〈u, α〉
〈u, v(G)〉 =

〈v, α〉
〈v, v(G)〉

}
.

A connected component of NS(X)⊗ R \ ∪uWu is called a chamber.

Remark 2.3.8. If v = ̺X , then Wu = u⊥.

Lemma 2.3.9. Let v be the Mukai vector of a 0-dimensional object E, which is primitive.

(1) M
G,α

OX(1)(v) consists of α-twisted stable objects if and only if α 6∈ ∪uWu. We say that α is general
with respect to v.

(2) If α is general with respect to v, then the virtual Hodge number of MG,α
OX(1)(v) does not depend on

the choice of α. In particular, the non-emptyness of MG,α
OX(1)(v) does not depend on the choice of α.

Proof. (1) For E ∈ MG,α

OX(1)(v), we assume that E is S-equivalent to ⊕ni=1Ei. If 〈v(Ei)2〉 = 0 for all i, then

v(Ei) ∈ Z>0̺X . Hence v =
∑n

i=1 v(Ei) is not primitive. Therefore we may assume that 〈v(E1)
2〉 = −2. By

the α-stability of E1, Supp(E1) ⊂ Zi for an i. Since E1 is generated by {Eij |0 ≤ j ≤ si}, v(E1) ∈ ⊕sij=0Z≥0vij .

Then we see that v(E1) ∈ ±Ri + Z̺X . Therefore the claim holds. (2) The proof is similar to that of [Y3,
Prop. 2.6]. �

Lemma 2.3.10. (1) Let w1 := vi0 +
∑si
j=1 nijvij, nij ≥ 0 be a Mukai vector with 〈w2

1〉 ≥ −2. Then

there is an α-twisted stable object E with v(E) = w1 for a general α.
(2) Let w2 ∈ Ri be a non-zero Mukai vector. Then there is an α-twisted stable object E with v(E) = w2

for a general α.

Proof. (1) By Proposition 2.3.16 below, we may assume that C = Per(X ′/Y,b1, ...,bn). The claim follows
from Lemme 2.3.19 below and Lemma 2.3.9 (2). Instead of using Lemma 2.3.19, we can also use Corollary
2.2.16 to show the claim for a special α.

(2) We set w1 :=
∑si

j=0 aijvij − w2. Then w1 is the Mukai vector in (1). We can take a general element

α ∈ NS(X)⊗Q such that 〈α,w1〉 = 0. Then α is general with respect to w1 and we have a α-twisted stable

object E with v(E) = w1. We consider Xα′

such that α′ is sufficiently close to α and 〈α′, v(E)〉 > 0. Since

Λα
′

is an equivalence, there is a morphism φ : E → Eα′

|{y}×X , where y ∈ Xα′

. By our choice of α, cokerφ is

an α-twisted stable object with v(cokerφ) = w2. Then the claim follows from Lemma 2.3.9 (2). �

2.3.2. A special chamber. We take α ∈ ̺⊥X with −〈v(Eij), α〉 > 0, j > 0.

Lemma 2.3.11. Λα(Eij)[−1], j > 0 is a line bundle on Cαij. We set Λα(Eij) := OCα
ij
(bαij)[1].
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Proof. We note that Λα(Eij)
L

⊗ Cxα = RHom(Eα|X×{xα}, Eij [2]). Then Hk(Λ(Eij)
L

⊗ Cxα) = 0 for k 6=
−1,−2. Hence Hk(Λα(Eij)) = 0 for k 6= −1,−2 and H−2(Λα(Eij)) is a locally free sheaf. By the proof
of Theorem 2.2.17 (3), Supp(Hk(Λα(Eij))) ⊂ Cαij for all k. Hence H−2(Λα(Eij)) = 0, which implies that
Λα(Eij)[−1] ∈ Coh(Xα). Since Hom(Cxα ,Λα(Eij)[−1]) = Hom(Eα|X×{xα}, Eij [−1]) = 0, Λα(Eij)[−1] is
purely 1-dimensional. We set C := Div(Λα(Eij)[−1]). Then (C2) = 〈v(Λα(Eij)[−1])2〉 = 〈v(Eij)2〉 = −2,
which implies that C = Cαij . Therefore Λα(Eij)[−1] is a line bundle on Cαij . �

Corollary 2.3.12. (1) (Cαij , C
α
i′j′) = 〈v(Eij), v(Ei′j′)〉.

(2) {Cαij} is a simple normal crossing divisor.

Proof. (1) By Lemma 2.3.11, (Cαij , C
α
i′j′) = 〈v(Λα(Eij)), v(Λα(Ei′j′ ))〉 = 〈v(Eij), v(Ei′j′)〉. Then (2) also

follows. �

Ei0 is a subobject of E|X×{xα} for xα ∈ Zαi and we have an exact sequence

(2.36) 0→ Ei0 → E|X×{xα} → F → 0, xα ∈ Zαi
where F is a 0-semi-stable object with gr(F ) = ⊕sij=1E

⊕aij
ij . Then we get an exact sequence

(2.37) 0→ Λα(F )[−1]→ Λα(Ei0)→ Cxα → 0

in Coh(Xα). Thus Λα(Ei0) ∈ Coh(Xα).

Definition 2.3.13. We set Aαi0 := Λα(Ei0) and A
α
ij := Λα(Eij) = OCα

ij
(bαij)[1] for j > 0.

Lemma 2.3.14. (1) Hom(Aαi0, A
α
ij [−1]) = Ext1(Aαi0, A

α
ij [−1]) = 0.

(2) We set bαi := (bαi1, b
α
i2, . . . , b

α
isi). Then Aαi0

∼= A0(b
α
i ). In particular, Hom(Aαi0,Cxα) = C for

xα ∈ Zαi .
Proof. (1) We have

Hom(Aαi0, A
α
ij [k]) = Hom(Λα(Ei0),Λ

α(Eij)[k])

= Hom(Ei0, Eij [k]) = 0
(2.38)

for k = −1, 0.
(2) By (2.37) and (1), we can apply Lemma 1.2.18 and get Aαi0 = A0(b

α
i ) = Api . �

Remark 2.3.15. Assume that α ∈ v⊥0 satisfies −〈v(Eij), α〉 < 0, j > 0. Then Φ(Eij)[2] = OCα
ij
(b′′ij), j > 0

and Φ(Ei0)[2] = A0(b
′′
i )[1] belong to Per(Xα/Y,b′′

1 , ...,b
′′
n)

∗, where b′′
i := (b′′i1, ..., b

′′
isi

).

By Proposition 2.3.4, we have the following result.

Proposition 2.3.16. If −〈α, v(Eij)〉 > 0 for all j > 0, then Λα induces an equivalence

C → Per(Xα/Y,bα1 , ...,b
α
n),

where bαi = (bαi1, ..., b
α
isi).

Proposition 2.3.17. Assume that there is a β ∈ ̺⊥X such that Cx are β-stable for all x ∈ X.

(1) We set F := Eα∨[2]. Then we have an isomorphism

(2.39)
X → M

Gα,Λα(β)
OXα (1) (̺Xα) = (Xα)Λ

α(β)

x 7→ F
L

⊗ Cx.

Since Φ
F∨[2]
Xα→X = ΦEα

Xα→X , we have C = Φ
F∨[2]
Xα→X(Per(Xα/Y,bα1 , ...,b

α
n)).

(2) We also have an isomorphism

(2.40)
X → M

(Gα)∨,−DXα◦Λα(β)
OXα (1) (̺Xα)

x 7→ Eα
L

⊗ Cx,

where M
(Gα)∨,−DXα◦Λα(β)
OXα (1) (̺Xα) is the moduli of stable objects of Λα(C)D.

Thus X and Xα are Fourier-Mukai dual.

Proof. (1) is a consequence of Corollary 2.3.6. (2) is a consequence of (1) and the isomorphismMGα,γ
OXα (1)(̺Xα)ss →

M(Gα)∨,−DXα (γ)
OXα (1) (̺Xα)ss defined by E 7→ DXα(E)[2]. �

The following proposition explains the condition of the stability of Cx.

Proposition 2.3.18. C = Λγ(Per(X ′/Y,b1, ...,bn)) with X = (X ′)γ if and only if there is a β ∈ ̺⊥X such
that Cx are β-stable for all x ∈ X.
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Proof. For X = (X ′)γ , γ-stability of Eγ|X′×{x} and Corollary 2.3.6 imply the β-stability of Cx, where β :=

Λγ(γ). Conversely if Cx are β-stable for all x ∈ X , then Proposition 2.3.17 (1) implies the claim, where
X ′ := Xα and γ := Λα(β). �

We give two examples of C satisfying the stability condition of Cx.

Lemma 2.3.19. (1) Assume that C = Per(X/Y,b1, ...,bn). If −〈α, v(OCij
(bij)[1])〉 > 0 for all j > 0,

then X ∼= Xα by sending x ∈ X to Cx ∈ Xα. Moreover Api ⊗ OC such that OC is a purely
1-dimensional OZi

-module with χ(OC) = 1 are α-stable.
(2) Assume that C = Per(X/Y,b1, ...,bn)

∗. If −〈α, v(OCij
(bij))〉 < 0 for all j > 0, then X ∼= Xα by

sending x ∈ X to Cx ∈ Xα.

Proof. We only prove (1). Since Cx, x ∈ X \ ∪ni=1Zi is irreducible, it is α-twisted stable for any α. For
x ∈ Zi, assume that there is an exact sequence

(2.41) 0→ E1 → Cx → E2 → 0

such that E1 6= 0, E2 6= 0 and −〈α, v(E1)〉 = χ(v−1(α), E1) ≥ 0. We note that −〈α, v(Eij)〉 > 0 for all j > 0.
Since 〈α, ̺X〉 = 0, 〈α, v(A0(bi))〉 = −

∑
j>0 aij〈α, v(Eij)〉. As a 0-semi-stable object, E1 is S-equivalent to

⊕j>0OCij
(bij)[1]

⊕a′ij , a′ij ≤ aij . Since Hom(OCij
(bij)[1],Cx) = 0, this is impossible. Therefore Cx is α-

twisted stable. Then we have an injective morphism φ : X → Xα by sending x ∈ X to Cx. By using the

Fourier-Mukai transform Φ
O∨

∆

X→X : D(X)→ D(X), we see that φ is surjective. Since both spaces are smooth,
φ is an isomorphism. The last claim also follows by a similar argument. �

2.3.3. Relation with the twist functor [S-T]. Let F be a spherical object of D(X) and set

(2.42) E := Cone(F∨
⊠ F → O∆)[1].

Then TF := ΦE
X→X is an autoequivalence of D(X).

Lemma 2.3.20. Let Π : D(X)→ D(Y ) be a Fourier-Mukai transform. Then

(2.43) Π ◦ TF ∼= TΠ(F ) ◦Π.

Proof. Let E ∈ D(X×Y ) be an object such that Π = ΦE

X→Y . It is sufficient to prove Π(E) ∼= TΠ(F )(E). We
set Xi := X , i = 1, 2. We note that F∨ ∼= Homp(OX1 ⊠ F,O∆), where p : X1 ×X2 → X1 is the projection
and ∆ ⊂ X1 ×X2 the diagonal. Then

(2.44) E ∼= Cone(Homp(OX1 ⊠ F,O∆)⊠ F → O∆)[1].

Let pX2 : Y ×X2 → X2, pY : Y ×X2 → Y and q : X1 × Y → X1 be the projections. We have a morphism

(2.45) Homp(OX1 ⊠ F,O∆)→ Homq′(OX1 ⊠ (E⊗ p∗X2
(F )), (OX1 ⊠E)|∆′)

→ Homq(OX1 ⊠RpY ∗(E⊗ p∗X2
(F )),E),

where ∆′ = ∆ × Y and q′ : X1 × Y ×X2 → X1 is the projection. We also have a commutative diagram in
D(Y ×X1):

(2.46)

Homp(OX1 ⊠ F,O∆)⊠Π(F )
α−−−−→ E

γ

y
∥∥∥

Homq(OX1 ⊠ ΦE

X→Y (F ),E)⊠Π(F )
β−−−−→ E.

Since Π is an equivalence, γ is an isomorphism. Since Π(E) ∼= Cone(α)[1] and TΠ(F )(E) ∼= Cone(β)[1], we
get Π(E) ∼= TΠ(F )(E). �

Corollary 2.3.21. Assume that Supp(Hi(F )) ⊂ Z for all i. Let D be the pull-back of a divisor on Y . Then
TF (E(D)) ∼= TF (E)(D).

Proof. We apply Lemma 2.3.20 to Π = Φ
O∆(D)
X→X . Since Π(F ) ∼= F , we get our claim. �

Proposition 2.3.22. Assume that G∨ ⊗ G satisfies R1π∗(G
∨ ⊗ G) = 0. Assume that G′ := TF (G) is a

locally free sheaf up to shift.

(1) R1π∗(G
′∨ ⊗G′) = 0 and π∗(G

′∨ ⊗G′) ∼= π∗(G
∨ ⊗G).
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(2) We set A′ := π∗(G
′∨ ⊗ G′). We identify CohA(Y ) with CohA′(Y ) via A ∼= A′. Then we have a

commutative diagram

(2.47)

Per(X/Y,b1, ...,bn)
TF−−−−→ TF (Per(X/Y,b1, ...,bn))

Rπ∗Hom(G, )

y
yRπ∗Hom(G′, )

CohA(Y ) CohA′(Y )

Proof. The proof is almost the same as that of Proposition 2.3.4. �

Definition 2.3.23. For an α ∈ H⊥ ⊗Q, Xα denotes the moduli stack of α-semi-stable objects E of C such
that v(E) = ̺X .

For an α ∈ H⊥ ⊗ Q, let F be an α-stable object such that (i) 〈v(F )2〉 = −2 and (ii) 〈α, v(F )〉 = 0. By
(i), F is a spherical object. By the same proof of [O-Y, Prop. 1.12], we have the following result.

Proposition 2.3.24. We set α± := ±ǫv(F ) + α, where 0 < ǫ≪ 1. Then TF induces an isomorphism

(2.48)
Xα− → Xα+

E 7→ TF (E)

which preserves the S-equivalence classes. Hence we have an isomorphism

(2.49) Xα− → Xα+

.

Combining Proposition 2.3.24 with Lemma 2.3.20, we get the following corollary.

Corollary 2.3.25. Assume that α belongs to exactly one wall defined by F . Then TF induces an isomorphism

Xα− → Xα+

. Under this isomorphism, we have

(2.50) ΦEα+

Xα−→X
∼= TF ◦ ΦEα−

Xα−→X
∼= ΦEα−

Xα−→X
◦ TA,

where A := Φ
(Eα−

)∨[2]

X→Xα− (F ).

2.4. Construction of a local projective generator. We return to the general situation in section 2.1.
We shall construct local projective generators for Per(X/Y, {Lij}).
Proposition 2.4.1. Let β be a 2-cocycle of O×

X defining a torsion element of H2(X,O×
X). Assume that

E ∈ Kβ(X) satisfies

0 ≤ −χ(E,Lij), 1 ≤ j ≤ si,
−
∑

j

aijχ(E,Lij) ≤ r(2.51)

for all i.

(1) There is a locally free β-twisted sheaf G on X such that R1π∗(G
∨⊗G) = 0, Rπ∗(G

∨⊗F ) ∈ Coh(Y )
for F ∈ Per(X/Y, {Lij}), G is µ-stable and τ(G) = τ(E) − nτ(Cx), n≫ 0.

(2) There is a locally free β-twisted sheaf G on X such that R1π∗(G
∨⊗G) = 0, Rπ∗(G

∨⊗F ) ∈ Coh(Y )
for F ∈ Per(X/Y, {Lij}) and τ(G) = 2τ(E).

(3) Moreover if the inequalities in (2.51) are strict, then G in (1) and (2) are local projective generators
of Per(X/Y, {Lij}).

Corollary 2.4.2. Assume that (r, ξ) ∈ Z>0 ⊕NS(X) satisfies

0 < (ξ, Cij)− r(bij + 1), 1 ≤ j ≤ si,∑

j

aij(ξ, Cij)− r
∑

j

aij(bij + 1) < r,(2.52)

for all i.

(1) For any sufficiently large n, there is a local projective generator G of Per(X/Y,b1, ...,bn) such that
G is a µ-stable sheaf with respect to H and (rkG, c1(G), c2(G)) = (r, ξ, c2).

(2) For any e ∈ K(X)top with (rk e, c1(e)) = (r, ξ), there is a local projective generator G such that
τ(G) = 2e.

Proof of Proposition 2.4.1.
(1) We assume that H is represented by a smooth connected curve with Z ∩H = ∅, where Z =

∑n
i=1 Zi.

We take a torsion free sheaf E such that Ext2(E,E(−Z − H))0 = 0. By the construction of E, we may
assume that E is locally free on Z∪H . We consider the restriction morphism of the local deformation spaces

(2.53) φ : Def(X,E)→ Def(Z,E|Z)×Def(H,E|H).
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Then Def(X,E) and Def(Z,E|Z) × Def(H,E|H) are smooth, and φ is submersive. In particular, by using
Lemma 2.4.3 below, we see that E deforms to a locally free β-twisted sheaf G such that G is µ-stable with
respect to H and Hom(G,Lij) = Ext1(G,Api) = 0 for all i, j. By Remark 1.1.23, Proposition 2.4.1 (1) holds.

(2) By (1), we have locally free sheaves Ei, i = 1, 2 such that R1π∗(E
∨
i ⊗Ei) = 0, Rπ∗(G

∨
i ⊗F ) ∈ Coh(Y )

for F ∈ Per(X/Y, {Lij}), τ(Ei) = τ(E)−niτ(Cx) and n1+n2 = n2(H2) rkE. Then G = E1(nH)⊕E2(−nH)
satisfies the claim.

(3) The claim follows from Proposition 1.1.22. �

Lemma 2.4.3. (1) E|Z deforms to a locally free β-twisted sheaf such that

(2.54) H0(Cij , E
∨ ⊗ Lij) = H1(Zi, E

∨ ⊗Api) = 0

for all i, j.
(2) E|H deforms to a µ-stable locally free β-twisted sheaf on H.

Proof. (1) Since E|Z = ⊕ni=1E|Zi
, we shall prove the claims for each E|Zi

. Since H2(Z,O×
Z ) = {1}, there

is a β-twisted line bundle L on Zi which induces an equivalence ϕ : Cohβ(Z) ∼= Coh(Z) in (1.134). Since
Pic(Zi) → Zsi (L 7→ ∏si

j=1 deg(L|Cij
)) is an isomorphism, we may assume that ϕ(Lij) = OCij

(−1). Thus

we may assume that β is trivial and Lij = OCij
(−1). In this case, we have Api = OZi

. Then we have
deg(E|Cij

) ≥ 0 for all j > 0 and deg(E|Zi
) ≤ r. Let D be an effective Cartier divisor on Zi such that

(D,Cij) = deg(E|Cij
). Then

(2.55) K := ker(H0(OZi∩D)⊗OZi
→ OZi∩D)

is a locally free sheaf on Zi such thatH1(Zi,K) = 0 andH0(Cij ,K|Cij
(−1)) = 0. Since rkK = dimH0(OZi∩D) =

degZi
(D) = deg(E|Zi

) ≤ r, we set F := K∨ ⊕ O⊕(rkE−rkK)
Zi

. Since F is a locally free sheaf with
(rkF, det(F∨)) = (rkE|Zi

, det(E|Zi
)), we get the claim by Lemma 2.1.4 and the openness of the condi-

tion (2.54).
(2) is well-known. �

Corollary 2.4.4. Assume that π is the minimal resolution of rational double points p1, ..., pn. Let C be the
category in Lemma 1.1.5 and Eij , 1 ≤ i ≤ n, 0 ≤ j ≤ si the 0-stable objects in Lemma 2.2.12 (2). For an
element E ∈ K(X) satisfying χ(E,Eij) > 0 for all i, j, there is a local projective generator G of C such that
τ(G) = 2τ(E).

Proof. We consider the equivalence Λα in Proposition 2.3.16. Then since χ(Λα(E),Λα(Eij)) > 0 for all i, j,
Proposition 2.4.1 implies that there is a local projective generatorGα of Λα(C) such that τ(Gα) = 2τ(Λα(E)).
We set G := (Λα)−1(Gα) ∈ C. Then

H0(X,Hk(G
L

⊗ Cx)) =H
k(X,G

L

⊗ Cx)

=Hom(Cx, G[k + 2])

=Hom(Λα(Cx), G
α[k + 2])

=Hom(Gα,Λα(Cx)[−k]) = 0

(2.56)

for all x ∈ X and k 6= 0. Therefore G is a locally free sheaf on X . Since Gα is a local projective generator
of Λα(C) and Λα is an equivalence, G is a local projective generator of C. �

2.4.1. More results on the structure of C. Let C be the category of perverse coherent sheaves in Lemma
1.1.5. Assume that there is β ∈ NS(X)⊗ Q such that Cx is β-stable for all x ∈ X . By Proposition 2.3.18,
C = Λα(Per(X ′/Y,b1, ...,bn)). So we first assume that C = Per(X/Y,b1, ...,bn) and set

(2.57) Eij :=

{
OCij

(bij)[1], j > 0,

A0(b), j = 0.

We set vij := v(Eij). Let u0 be an isotropic Mukai vector such that r0 := rku0 > 0, 〈u0, vij〉 = 0 for all i, j.
We set

(2.58) L := Zu0 +

n∑

i=1

si∑

j=0

Zvij .

Then L is a sublattice of H∗(X,Z) and we have a decomposition

(2.59) L = (Zu0 ⊕ Z̺X) ⊥ (⊕ni=1 ⊕sij=1 Zvij).

We set

Ti :=⊕sij=1 ZCij ,

T :=⊕ni=1 Ti.
(2.60)
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Then we have an isometry

(2.61)
ψ : ⊕ni=1 ⊕sij=1 Zvij → T

v 7→ c1(v).

Combining the isometry Zu0 ⊕ Z̺X → Zr0 ⊕ Z̺X (xu0 + z̺X 7→ xr0 + z̺X), we also have an isometry

(2.62) ψ̃ : (Zu0 ⊕ Z̺X) ⊥ (⊕ni=1 ⊕sij=1 Zvij)→ (Zr0 ⊕ Z̺X) ⊥ T
Let gi (resp. ĝi) be the finite Lie algebra (resp. affine Lie algebra) associated to the lattice ⊕sij=1Zvij (resp.

⊕sij=0Zvij). Let g (resp. ĝ) be the Lie algebra associated to ⊕ni=1 ⊕sij=1 Zvij (resp. ⊕ni=1 ⊕sij=0 Zvij).

Let W (gi) (resp. W (g)) be the Weyl group of gi (resp. g) and Wi (resp. W) the set of Weyl chambers
of W (gi) (resp. W (g)). Since g = ⊕ni=1gi, W (g) =

∏n
i=1W (gi) and W =

∏n
i=1Wi. By the action of W (g),

Qu0 + Q̺X is fixed. Let W (ĝi) (resp. W (ĝ)) be the Weyl group of ĝi (resp. ĝ). We have the following
decompositions

W (ĝi) =Ti ⋊W (gi),

W (ĝ) =T ⋊W (g),
(2.63)

and the action of D ∈ T on L is the multiplication by eD. Indeed

TOCij
(bij+1) ◦ TOCij

(bij)[1] = e−Cij

as an isometry of L.
We shall study the category Λα(C). We may assume that α ∈ NS(X)⊗Q is α =

∑
i αi with αi ∈ Ti ⊗Q.

Via the identification ψ, we have an action of W on T ⊗Q. We set

Cfund
i :={α ∈ Ti ⊗ R|(α,Cij) > 0, 1 ≤ j ≤ si},

Cfund :=

n∏

i=1

Cfund
i .

(2.64)

Cfund is the fundamental Weyl chamber. If α ∈ Cfund, then Lemma 2.3.19 implies that Cx is α-stable for all
x ∈ X . By the action of W (gi), we have Wi =W (gi)C

fund
i . We also set

Cfund
alcove :={α ∈ T ⊗ R|(α,Cij) > 0, 1 ≤ j ≤ si, (α,Zi) < 1}.(2.65)

By the isometry ψ̃−1, we have

(α,Cij) =− 〈ψ−1(α), vij〉

=− 〈( u0
rku0

+ ψ−1(α) +
(α2)

2
̺X), vij〉 = −〈e

c1(u0)
rku0

+α
, vij〉

(2.66)

for j > 0 and 1− (α,Zi) = 1 +
∑si

j=1 aij〈e
c1(u0)
rku0

+α, vij〉 = −〈e
c1(u0)
rku0

+α, vi0〉. Hence we have

Cfund
alcove ={α ∈ T ⊗ R| − 〈e

c1(u0)

rk u0
+α, vij〉 > 0}.(2.67)

Applying Corollary 2.3.25 successively, we get the following result.

Proposition 2.4.5. If α ∈ T ⊗ Q belongs to a chamber C =
∏n
i=1 Ci, Ci ⊂ Ti ⊗ Q, then there are rigid

objects F1, ..., Fn ∈ C such that Xα ∼= X and ΦEα

X→X = TFn
◦TFn−1 ◦· · ·◦TF1 . Thus Λ

α = (ΦEα

X→X)−1 induces
an isometry w(α) of L.

Then we have a map

(2.68)
φ : W → W (ĝ)/T

C(α) 7→ [w(α) mod T ],

where C(α) is the chamber containing α.

Lemma 2.4.6. φ :W →W (ĝ)/T ∼=W (g) is bijective.

Proof. There is an element α0 in the fundamental Weyl chamber such that α = ΦEα

X→X(α0). Hence
w(α)(C(α)) = C(α0). Thus φ is injective. Since #Wi = #W (gi), φ is bijective. �

We set

(2.69) T ∗ := {D ∈ T ⊗Q|(D,Cij) ∈ Z}.

Then W̃ := T ∗ ⋊W (g) is the extended Weyl group. By the action of W̃ , we can change (b1, ...,bn) to any
sequence (b′

1, ...,b
′
n).
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Proposition 2.4.7. Let C be the category in Lemma 1.1.5 and assume that there is β ∈ NS(X)⊗Q such that
Cx is β-stable for all x ∈ X. Then C is equivalent to −1 Per(X/Y ). In particular, Per(X/Y,b1, ...,bn) ∼=
−1 Per(X/Y ).

Proof. We may assume that C = Per(X/Y,b1, ...,bn). We set

(2.70) uij :=

{
v(OCij

(−1)[1]), j > 0,

v(OZi
), j = 0.

By the theory of affine Lie algebras, there is an element w ∈W (ĝ) such that

w({β ∈ T ⊗ R| − 〈eβ, vij〉 > 0, i, j ≥ 0})
={β ∈ T ⊗ R| − 〈eβ, uij〉 > 0, i, j ≥ 0}.

(2.71)

Then we have
{w(vij)|0 ≤ j ≤ si} = {uij|0 ≤ j ≤ si}

for all i.
For each i, there is an integer ji such that (1) c1(w(viji )) is effective and (2) −c1(w(vij)), j 6= ji are

effective. By Lemma 2.4.6, we have w = eDφ(α), D,α ∈ T . Since v(Λα(Eij)⊗OX(D)) = eDv(Λα(Eij)) =
eDφ(α)(vij), Proposition 2.3.4 (2) implies that −(α, c1(Eij)) > 0 unless j = ji. By Lemma 2.2.18 and
Lemma 2.3.11, Λα(Eij)[−1], j 6= ji is a line bundle on a smooth rational curve and Λα(Eiji ) is a line bundle
on Zi. Thus

{Λα(Eij)⊗OX(D)|j 6= ji} ={OCij
(−1)[1]|0 < j ≤ si},

Λα(Eiji )⊗OX(D) =OZi
.

(2.72)

By Proposition 2.3.4 (5), we get Λα(C)⊗OX(D) ∼=−1 Per(X/Y ). �

Remark 2.4.8. For the derived category of coherent twisted sheaves, we also see that the equivalence classes
of Per(X/Y, {Lij}) does not depend on the choice of {Lij}.
Proposition 2.4.9. We set v = (r, ξ, a) ∈ Hev(X,Z)alg, r > 0. Assume that (ξ,D) 6∈ rZ for all D ∈ T with
(D2) = −2. Then there is a category of perverse coherent sheaves Cv and a locally free sheaf G on X such
that G is a local projective generator of Cv with v(G) = 2v. We also have a local projective generator G′ of
Cv such that G′ is µ-stable with respect to H and v(G′) = v − b̺X, b≫ 0.

Proof. We set C = Per(X/Y,b1, ...,bn) and keep the notation as above. By our assumption, 〈v, u〉 6∈ rZ for
all (−2)-vectors u ∈ L. Then there is w ∈ W such that v = w(vf ) and vf/r belongs to the fundamental
alcove, that is, −〈vf/r, vij〉 > 0 for all i, j. By Lemma 2.4.6, we have an element α such that w = eDφ(α),
D ∈ T . By Proposition 2.4.1, there is a local projective generator Gf of C such that v(Gf ) = 2vf . We
set Cv := Λα(C) ⊗ OX(D). Then Gα := Λα(Gf ) is a local projective generator of Cv ⊗ OX(−D). Hence
G := Gα(D) is a local projective generator of Cv such that v(G) = 2v. �

2.5. Deformation of a local projective generator. Let f : (X ,L) → S be a flat family of polarized
surfaces over S. For a point s0 ∈ S, we set X := Xs0 . Let H be a relative Cartier divisor on X such that
H := Hs0 gives a contraction f : X → Y to a normal surface Y with Rπ∗(OX) = OY . We shall construct a
family of contractions f : X → Y over a neighborhood of s0.

Replacing H by mH , we may assume that Hi(X,OX(mH)) = Hi(Y,OY (mH)) = 0 for m > 0. We shall
find an open neighborhood S0 of s0 such that Rif∗(OXS0

(mH)) = 0, i > 0,m > 0 and f∗(OXS0
(mH)) is

locally free: We consider the exact sequence

(2.73) 0→ OX (mH)→ OX ((m+ 1)H)→ OH((m+ 1)H)→ 0.

Since H → S is a flat morphism, the base change theorem implies that Rif∗(OX (mH)) → Rif∗(OX ((m +
1)H)) is surjective, if (m + 1)(H2) > (H2) + (H,KX). We take an open neighborhood S0 of s0 such that
Rif∗(OXS0

(mH)) = 0, i > 0, (H,KX)/(H2) ≥ m > 0. Then the claim holds. We replace S by S0 and set

Y := Proj(⊕mf∗(OX (mH))). Then Y is flat over S and Ys0 ∼= Y . By the construction, Y → S is a flat
family of normal surfaces.

Let Z := {x ∈ X| dimπ−1(π(x)) ≥ 1} be the exceptional locus. Then {(Zs,Ls)|s ∈ S} is a bounded set.
Hence D := {D ∈ NS(Xs)|s ∈ S, (D,Hs) = 0} is a finite set. Replacing S by an open neighborhood of s0,
we may assume that D ∈ D is a deformation of D0 ∈ NS(X) (i.e., D belongs to NS(X) via the identification
H2(Xs,Z) ∼= H2(X,Z)).

Lemma 2.5.1. Assume that there is a locally free sheaf G on X such that R1π∗(G
∨ ⊗ G) = 0 and rkG ∤

(c1(G)s0 , D) for all (−2)-curves with (D,Hs0) = 0. Then replacing S by an open neighborhood of s0, we
may assume that rkG ∤ (c1(G)s, D) for all (−2)-curves with (D,Hs) = 0. Thus G is a family of tilting
generators.
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As an example, we consider a family of K3 surfaces. Let X be a K3 surface and π : X → Y a contraction.
Let pi, i = 1, 2, ..., n be the singular points and Zi :=

∑
j aijCij their fundamental cycles. Let H be the

pull-back of an ample divisor on Y . Assume that (r, ξ) ∈ Z>0×NS(X) satisfies r ∤ (ξ,D) for all (−2)-curves
D with (D,H) = 0. By Proposition 2.4.9, there is a category of perverse coherent sheaves C and a local
projective generator G of C such that G is µ-stable with respect to H and (rkG, c1(G)) = (r, ξ). Replacing
G by G ⊗ L⊗m, L ∈ Pic(X) and C by C ⊗ L⊗m, we assume that ξ is ample. If (Qξ + QH) ∩H⊥ does not
contain a (−2)-curve, then we have a deformation (X ,L)→ S of (X, ξ) such that Hs is ample for a general
s ∈ S. Since G is simple, replacing S by a smooth covering S′ → S, we also have a deformation G of G over
S. By shrinking S, we may assume that G is a family of tilting generators. Then we can construct a family

of moduli spaces f : M
G

(X ,H)/S(v)→ S of Gs-twisted semi-stable objects on Xs, s ∈ S (for the twisted cases,

see Step 3, 4 of the proof of [Y4, Thm. 3.16]). By our assumption, a general fiber of f is the moduli space
of Gs-twisted semi-stable sheaves, which is non-empty by Lemma 6.2.3. Hence we get the following lemma.

Lemma 2.5.2. Assume that v is primitive and 〈v2〉 ≥ −2. Then f is surjective. In particular,M
G

(X ,H)/S(v)s0 6=
∅.
Remark 2.5.3. We note that R := {C ∈ NS(X)|(C,H) = 0, (C2) = −2} is a finite set. If ρ(X) ≥ 3, then
∪C∈R(QH +QC) is a proper subset of NS(X)⊗Q. Hence (Qξ + QH) ∩ R = ∅ for a general ξ. In general,
we have a deformation (X ,L) → S of (X, ξ) such that G is a family of tilting generators and ρ(Xs) ≥ 3 for
infinitely many points s ∈ S.
Remark 2.5.4. By the usual deformation theory of objects, we note that MG

(X ,H)/S(v) → S is a smooth

morphism. If M
G

(X ,H)/S(v)s0 = MG
(X ,H)/S(v)s0 , then we have a smooth deformation M

G

(X ,H)/S(v) → S of

M
G

(X ,H)/S(v)s0 . In particular, M
G

(X ,H)/S(v)s0 deforms to a usual moduli of semi-stable sheaves.

Corollary 2.5.5. Let v0 = (r, ξ, a) be a primitive isotropic Mukai vector such that r 6 |(ξ,D) for all (−2)-
curves D with (D,H) = 0. Let C be the category in Proposition 2.4.9. Then Mv0

H (v0) 6= ∅.

Proof. By Lemma 2.5.2 and Remark 2.5.3, we see thatM
v0
H (v0) 6= ∅. By the same proof of [O-Y, Lem. 2.17],

we see that M
v0+α

H (v0) 6= ∅ for a general α. Then M
v0+α

H (v0) is a K3 surface. In the same way as in the
proof of [O-Y, Prop. 2.11], we see that Mv0

H (v0) 6= ∅. �

3. Fourier-Mukai transform on a K3 surface.

3.1. Basic results on the moduli spaces of dimension 2. Let Y be a normalK3 surface and π : X → Y
the minimal resolution. Let p1, p2, . . . , pn be the singular points of Y and Zi := π−1(pi) =

∑si
j=0 aijCij the

fundamental cycle, where Cij are smooth rational curves on X and aij ∈ Z>0. We shall study moduli of
stable objects in the category C in Lemma 1.1.5 satisfying the following assumption.

Assumption 3.1.1. There is a β ∈ ̺⊥X ⊗Q such that Cx is β-stable for all x ∈ X .

By Proposition 2.3.18, there are bi := (bi1, bi2, . . . , bisi) ∈ Z⊕si and an autoequivalence Φ
F∨[2]
X→X : D(X)→

D(X) such that Φ
F∨[2]
X→X(Per(X/Y )) = C, where Per(X/Y ) := Per(X/Y,b1, . . . ,bn) and F is the family of

ΦF
X→X(β)-stable objects of Per(X/Y ) in Proposition 2.3.18. We set

(3.1) Aij :=

{
Φ

F∨[2]
X→X(A0(bi)), j = 0,

Φ
F∨[2]
X→X(OCij

(bij)[1]), j > 0.

Throughout this section, we assume the following:

Assumption 3.1.2. v0 := r0 + ξ0 + a0̺X , r0 > 0, ξ0 ∈ NS(X) is a primitive isotropic Mukai vector such
that 〈v0, v(Aij)〉 < 0 for all i, j.

By Corollary 2.4.4, we have the following.

Lemma 3.1.3. There is a local projective generator G of C whose Mukai vector is 2v0. More generally, for a
sufficiently small α ∈ (v⊥0 ∩̺⊥X)⊗Q, there is a local projective generator G of C such that v(G) ∈ Q>0(v0+α).

Let H be the pull-back of an ample divisor on Y . For a sufficiently small α ∈ (v⊥0 ∩ ̺⊥X) ⊗ Q, we take
a local projective generator G of C with v(G) ∈ Q>0(v0 + α). We define v0 + α-twisted semi-stability in a

usual way. Since it is equivalent to the G-twisted semi-stability, we have the moduli space M
v0+α

H (v0). Let
Mv0+α
H (v0) be the moduli space of v0 + α-stable objects. By Corollary 2.5.5, Mv0

H (v0) 6= ∅. Hence we see

that Mv0+α
H (v0) is also non-empty. Then we have the following which is well-known for the moduli of stable

sheaves on K3 surfaces.
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Proposition 3.1.4. (1) Mv0+α
H (v0) is a smooth surface. If α is general, then M

v0+α

H (v0) =Mv0+α
H (v0)

is projective.

(2) If M
v0+α

H (v0) =Mv0+α
H (v0), then it is a K3 surface.

For the structure of M
v0
H (v0), as in [O-Y], we have the following.

Theorem 3.1.5. (cf. [O-Y, Thm. 0.1])

(1) M
v0
H (v0) is normal and the singular points q1, q2, . . . , qm of M

v0
H (v0) correspond to the S-equivalence

classes of properly v0-twisted semi-stable objects.

(2) For a suitable choice of α with |〈α2〉| ≪ 1, there is a surjective morphism π : M
v0+α

H (v0) =

Mv0+α
H (v0)→M

v0
H (v0) which becomes a minimal resolution of the singularities.

(3) Let
⊕

j≥0 E
⊕a′ij
ij be the S-equivalence class corresponding to qi, where Eij are v0-twisted stable

objects.
(a) Then the matrix (−〈v(Eij), v(Eik)〉)j,k≥0 is of affine type Ã, D̃, Ẽ.

(b) Assume that a′i0 = 1. Then the singularity of M
v0
H (v0) at qi is a rational double point of type

A,D,E according as the type of the matrix (−〈v(Eij), v(Eik)〉)j,k≥1.

Remark 3.1.6. A (−2)-vector u ∈ L := v⊥0 ∩ Ĥ⊥ ∩ H∗(X,Z)alg is numerically irreducible, if there is no
decomposition u =

∑
i biui such that ui ∈ L, 〈u2i 〉 = −2, rku > rkui > 0, bi ∈ Z>0. If u is numerically

irreducible, as we shall see in Proposition 3.2.14, there is a v0-twisted stable object E with v(E) = u.
In particular, if there is a decomposition v0 =

∑
i≥0 aiui such that ui ∈ L are numerically irreducible,

〈u2i 〉 = −2, rkui > 0 and ai ∈ Z>0, then there are v0-stable objects Ei such that v(Ei) = ui, and hence
v0 = v(⊕iE⊕ai

i ). Thus the types of the singularities are determined by the sublattice L of H∗(X,Z).

We shall give a proof of this theorem in subsection 3.2. We assume that α ∈ (v⊥0 ∩ ̺⊥X) ⊗ Q is general

and set X ′ := Mv0+α
H (v0). X

′ is a K3 surface. We have a morphism φ : X ′ → M
v0
H (v0). We shall explain

some cohomological properties of the Fourier-Mukai transform associated to X ′. Let E be a universal family
as a twisted object on X ′ ×X . For simplicity, we assume that E is an untwisted object on X ′ ×X . But all
results hold even if E is a twisted object. We set

G1 :=E|{x′}×X ∈ K(X),

G2 :=E∨|X′×{x} ∈ K(X ′),

G3 :=E|X′×{x} ∈ K(X ′)

(3.2)

for some x ∈ X and x′ ∈ X ′. We also set

(3.3) w0 := v(E∨|X′×{x}) = r0 + ξ̃0 + ã0̺X′ , ξ̃0 ∈ NS(X ′).

We set Φα := ΦE∨

X→X′ and Φ̂α := ΦE
X′→X . Thus

(3.4) Φα(x) := RHompX′
(E , p∗X(x)), x ∈ D(X),

and Φ̂α : D(X ′)→ D(X) by

(3.5) Φ̂α(y) := RHompX (E∨, p∗X′(y)), y ∈ D(X ′),

where HompZ (−,−) = pZ∗HomOX′×X
(−,−), Z = X,X ′ are the sheaves of relative homomorphisms.

Theorem 3.1.7 ([Br2], [O]). Φα is an equivalence of categories and the inverse is given by Φ̂α[2].

For D ∈ H2(X,Q), we set

D̂ :=−
[
Φα

(
D +

(D, ξ0)

r0
̺X

)]

1

=

[
pX′∗

((
c2(E)−

r0 − 1

2r0
(c1(E)2)

)
∪ p∗X(D)

)]

1

∈ H2(X ′,Q),

(3.6)

where [ ]1 means the projection to H2(X ′,Q).

Lemma 3.1.8. (cf. [Y5, Lem. 1.4]) r0Ĥ is a nef and big divisor on X ′ which defines a contraction

π′ : X ′ → Y ′ of X ′ to a normal surface Y ′. There is a morphism ψ : Y ′ →M
v0
H (v0) such that φ = ψ ◦ π′.

Proof. Let G be a local projective generator of C such that τ(G) = 2τ(G1) (Lemma 3.1.3). Applying Lemma

1.4.6, we have an ample line bundle L(ζ) onMG

H(v0) =M
v0
H (v0). By the definition of Ĥ , c1(φ

∗(L(ζ))) = r0Ĥ .
Hence our claim holds. �

Proposition 3.1.9. (cf. [Y5, Prop. 1.5])
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(1) Every element v ∈ H∗(X,Z) can be uniquely written as

v = lv0 + a̺X + d

(
H +

1

r0
(H, ξ0)̺X

)
+

(
D +

1

r0
(D, ξ0)̺X

)
,

where

l =
rk v

rk v0
= −〈v, ̺X〉

rk v0
∈ 1

r0
Z,

a =− 〈v, v0〉
rk v0

∈ 1

r0
Z,

d =
degG1

(v)

rk v0(H2)
∈ 1

r0(H2)
Z

(3.7)

and D ∈ H2(X,Q) ∩H⊥. Moreover v ∈ v(D(X)) if and only if D ∈ NS(X)⊗Q ∩H⊥.
(2)

Φα
(
lv0 + a̺X +

(
dH +D +

1

r0
(dH +D, ξ0)̺X

))

=l̺X′ + aw0 −
(
dĤ + D̂ +

1

r0
(dĤ + D̂, ξ̃0)̺X′

)(3.8)

where D ∈ H2(X,Q) ∩H⊥.
(3)

degG1
(v) = − degG2

(Φα(v)).

In particular, degG2
(w) ∈ Z for w ∈ H∗(X ′,Z) and

min{degG1
(E) > 0|E ∈ K(X)} = min{degG2

(F ) > 0|F ∈ K(X ′)}.
3.2. Proof of Theorem 3.1.5. We shall choose a special α and study the structure of the moduli spaces.

We first prove the following. The normalness of M
v0
H (v0) will be proved in Proposition 3.2.13.

Proposition 3.2.1. (1) ψ : Y ′ →M
v0
H (v0) is bijective.

(2) The singular points of Y ′ correspond to properly v0-twisted semi-stable objects.

(3) Let
⊕

j≥0 E
⊕a′ij
ij be the S-equivalence class of a properly v0-twisted semi-stable object, where Eij are

v0-twisted stable. Then the matrix (−〈v(Eij), v(Eik)〉)j,k≥0 is of affine type Ã, D̃, Ẽ. We assume

that ai0 = 1. Then ψ−1(
⊕

j≥0 E
⊕a′ij
ij ) is a rational double point of type A,D,E according as the

type of the matrix (−〈v(Eij), v(Eik)〉)j,k≥1.

3.2.1. Proof of Proposition 3.2.1. We note that Mv0
H (v0) is smooth and φ, ψ are isomorphic over Mv0

H (v0).

Hence the singular points of Y ′ are in the inverse image of M
v0
H (v0) \Mv0

H (v0). Thus we may concentrate
on the locus of properly v0-twisted semi-stable objects. The first claim of Proposition 3.2.1 (3) follows from
the following.

Lemma 3.2.2. Assume that E is S-equivalent to
⊕

j≥0 E
⊕a′ij
ij , where Eij are v0-twisted stable objects. Then

the matrix (−〈v(Eij), v(Eik)〉)j,k≥0 is of type Ã, D̃, Ẽ. Moreover 〈v(Eij), v(Ekl)〉 = 0, if
⊕

j≥0 E
⊕a′ij
ij 6∼=

⊕
l≥0E

⊕a′kl

kl .

Proof. Since degG1
(E) = χ(G1, E) = 0, degG1

(Eij) = χ(G1, Eij) = 0, which implies that v(Eij) ∈ v⊥0 ∩ Ĥ⊥.

Since (v⊥0 ∩ Ĥ⊥)/Zv0 is negative definite, applying Lemma 6.1.1 (1), we see that the matrix is of type

Ã, D̃, Ẽ. We note that
⊕

j≥0 E
⊕a′ij
ij 6∼=

⊕
l≥0 E

⊕a′kl

kl implies that {Ei0, Ei1, ..., Eis′
i
} 6= {Ek0, Ek1, ..., Eks′

k
}.

Since χ(Eij , Ekl) > 0 implies that Eij ∼= Ekl, {v(Ei0), v(Ei1), ..., v(Eis′
i
)} 6= {v(Ek0), v(Ek1), ..., v(Eks′

k
)}.

Then the second claim follows from Lemma 6.1.1 (2). �

By this lemma, we may assume that a′i0 = 1 for all i. THen we can choose a sufficiently small α ∈ v⊥0
such that −〈α, v(Eij)〉 > 0 for all j > 0. We have the following.

Lemma 3.2.3. Lemma 2.2.15 holds, if we replace ̺X by v0 and the α-stability by the v0+α-twisted stability.

Proof. (1) Assume that F is S-equivalent to
⊕

j≥0 F
⊕cij
ij , where Fij are v0-twisted stable objects. If v(F ) =

v(⊕j≥0E
⊕bij
ij ), bi0 = 1, then applying Lemma 3.2.2 to

⊕
j≥0 F

⊕cij
ij ⊕⊕

j≥0E
⊕(aij−bij)
ij and

⊕
j≥0 E

⊕aij
ij , we

get
⊕

j≥0 F
⊕cij
ij ⊕⊕

j>0 E
⊕(aij−bij)
ij

∼=
⊕

j≥0 E
⊕aij
ij , which implies the claim. Then the proofs of (2), (3) and

(4) are the same. �
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Lemma 3.2.4. (1) We set

(3.9) C′
ij := {x′ ∈ X ′|Hom(E|{x′}×X , Eij) 6= 0}, j > 0.

Then C′
ij is a smooth rational curve.

(2)

φ−1(
⊕

j≥0

E
⊕a′ij
ij ) ={x′ ∈ X ′|Hom(Ei0, E|{x′}×X) 6= 0} = ∪jC′

ij .(3.10)

In particular, φ and ψ are surjective.

Proof. The proof is the same as in Lemma 2.2.18. �

We also have the following lemma whose proof is the same as of Lemma 2.3.11.

Lemma 3.2.5. Φα(Eij)[1] is a line bundle on C′
ij. In particular, 〈v(Eij), v(Ekl)〉 = (C′

ij , C
′
kl). We define

b′ij by Φα(Eij) = OC′

ij
(b′ij)[−1].

This lemma shows that the configuration of {C′
ij |j > 0} is of type A,D,E. Since (Ĥ, C′

ij) = 0, ∪jC′
ij is

contracted to a rational double point of Y ′. Hence Proposition 3.2.1 (2) and (3) hold. Since ψ−1(
⊕

j≥0 E
⊕a′ij
ij )

is a point, ψ is injective. Thus Proposition 3.2.1 (1) also holds.
We shall prove the normality in Proposition 3.2.13.

3.2.2. Perverse coherent sheaves on X ′ and the normality of M
v0
H (v0). We set Z ′

i := π−1(qi) =
∑s′i
j=1 a

′
ijC

′
ij .

Then Ei0 is a subobject of E|{x′}×X for x′ ∈ Z ′
i and we have an exact sequence

(3.11) 0→ Ei0 → E|{x′}×X → F → 0, x′ ∈ Z ′
i

where F is a v0-twisted semi-stable object with gr(F ) = ⊕s
′

i

j=1E
⊕a′ij
ij . Then we get an exact sequence

(3.12) 0→ Φα(F )[1]→ Φα(Ei0)[2]→ Cx′ → 0

in Coh(X ′). Thus WIT2 holds for Ei0 with respect to Φα.

Definition 3.2.6. We set A′
i0 := Φα(Ei0)[2] and A

′
ij := Φα(Eij)[2] = OC′

ij
(b′ij)[1] for j > 0.

Lemma 3.2.7. (1) Hom(A′
i0, A

′
ij [−1]) = Ext1(A′

i0, A
′
ij [−1]) = 0.

(2) We set b′
i := (b′i1, b

′
i2, . . . , b

′
is′

i
). Then A′

i0
∼= A0(b

′
i). In particular, Hom(A′

i0,Cx′) = C for x′ ∈ Z ′
i.

(3) Irreducible objects of Per(X ′/Y ′,b′
1, ...,b

′
m) are

(3.13) A′
ij (1 ≤ i ≤ m, 0 ≤ j ≤ s′i), Cx′ (x′ ∈ X ′ \ ∪iZ ′

i).

Proof. (1) We have

Hom(A′
i0, A

′
ij [k]) = Hom(Φα(Ei0)[2],Φ

α(Eij)[2 + k])

= Hom(Ei0, Eij [k]) = 0
(3.14)

for k = −1, 0.
(2) By (3.12) and (1), we can apply Lemma 2.1.8 to prove A′

i0 = A0(b
′
i) = Aqi . (3) is a consequence of

(2) and Proposition 1.2.19. �

Definition 3.2.8. We set

Per(X ′/Y ′) :=Per(X ′/Y ′,b′
1, . . . ,b

′
m),

Per(X ′/Y ′)D :=Per(X ′/Y ′,−b′
1 + 2b0, . . . ,−b′

m + 2b0)
∗,b0 := (−1,−1, ...,−1).

(3.15)

Remark 3.2.9. Assume that α ∈ v⊥0 satisfies −〈v(Eij), α〉 < 0, j > 0. Then Φ(Eij)[2] = OC′

ij
(b′′ij), j > 0 and

Φ(Ei0)[2] = A0(b
′′
i )[1] belong to Per(X ′/Y ′,b′′

1 , . . . ,b
′′
m)∗, where b′′

i = (b′′i0, ..., b
′′
is′

i
).

Lemma 3.2.10. There is a local projecive generator G of Per(X ′/Y ′) such that τ(G) = 2τ(G2). Moreover
G∨ is a local projective generator of Per(X ′/Y ′)D.

Proof. Since χ(G2, Aij) = χ(Cx, Eij) = rkEij > 0, we get our claim by Proposition 2.4.1. The second claim
follows from the definition of Per(X ′/Y ′)D and Lemma 1.1.8. �

Lemma 3.2.11. Let E be an object of C such that E is G1-twisted stable and degG1
(E) = χ(G1, E) = 0.

Then E ∼= Eij or E ∼= E|{x′}×X , x′ ∈ X ′ \ ∪iZ ′
i.

Proof. Since χ(G1, E) = 0, there is a point x′ ∈ X ′ such that Hom(E|{x′}×X , E) 6= 0 or Hom(E, E|{x′}×X) 6=
0. Then E is a quotient object or a subobject of E|{x′}×X , which implies the claim. �
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Definition 3.2.12. (1) Let Cv0 be the full subcategory of C generated by Eij and E|{x′}×X , x′ ∈ X ′.
That is Cv0 consists of v0-twisted semi-stable objects E with degG1

(E) = χ(G1, E) = 0.
(2) Let Per(X ′/Y ′)0 be the full subcategory of Per(X ′/Y ′) consisting of 0-dimensional objects.

Proposition 3.2.13. (1) Φα[2] induces an equivalence Cv0 → Per(X ′/Y ′)0.

(2) Moreover Φα[2] induces an isomorphismMv0+β
H (v0)

ss ∼=MG,Φα(β)

Ĥ
(̺X′)ss, where β ∈ (v⊥0 ∩̺⊥X)⊗Q

is sufficiently small and G an arbitrary projective generator of Per(X ′/Y ′).

(3) M
v0+β

H (v0) ∼=M
G,Φα(β)

Ĥ
(̺X′). In particular, M

v0
H (v0) is a normal surface.

Proof. (1) We note that Φα(Eij)[2] = A′
ij and Φα(E|{x′}×X)[2] = Cx′ , x′ ∈ X ′. Hence the claim holds. (2)

We note that E ∈ Mv0
H (v0)

ss is v0 + β-twisted semi-stable, if χ(β, F ) = χ(v0 + β, F ) ≤ 0 for all subsheaf
F of E with degG1

(F ) = χ(G1, F ) = 0. Since χ(Φα(β),Φα(F )) = χ(β, F ), Φα(E)[2] is (G2,Φ
α(β))-twisted

semi-stable. Then Remark 1.5.5 implies that Φα(E)[2] is (G,Φα(β))-twisted semi-stable for any G. The first

claim of (3) follows from (2). In the notation of subsection 2.2, M
G,0

Ĥ (̺X′) ∼= (X ′)0. Hence the second claim
of (3) follows from Proposition 2.2.10. �

Proposition 3.2.14. Let u ∈ Hev(X,Z)alg be a Mukai vector such that u ∈ v⊥0 ∩ Ĥ⊥, 0 < rku < rk v0 and

〈u2〉 = −2. Then u =
∑

j bjv(Eij), 0 ≤ bj ≤ aij. In particular, M
v0
H (u) 6= ∅.

Proof. Since u ∈ v⊥0 ∩Ĥ⊥, Φα(u) = (0, D, b), D ∈ NS(X ′), b ∈ Z and (D, Ĥ) = 0. Since (D2) = −2, D or −D
is an effective divisor supported on an exceptional locus Z ′

i. Hence Φα(u) ∈ ⊕s
′

i

j=0ZΦ
α(Eij) = ⊕s

′

i

j=1ZCij ⊕
Z̺X . By the basic properties of the root systems of affine Lie algebra, Φα(u) = cΦα(v0)±

∑
j>0 cjΦ

α(Eij),

0 ≤ cj ≤ aij . Then rku = cr ± ∑
j>0 cj rkEij . Since

∑
j>0 cj rkEij ≤

∑
j>0 aij rkEij < r, we get

u =
∑

j>0 cjv(Eij) or u = v0 −
∑
j>0 cjv(Eij). Therefore the claim holds. �

3.3. Walls and chambers for the moduli spaces of dimension 2. We shall study the dependence of
M

w

H(v0) on w. We set

(3.16)
δ : NS(X)⊗Q → H∗(X,Q)

D 7→ D + (D,ξ0)
r0

̺X .

We may assume that w = v0 + α, α ∈ δ(H⊥) (cf. [O-Y, sect. 1.1]). We set

(3.17) U :=

{
u ∈ v(D(X))

∣∣∣∣∣
〈u2〉 = −2, 〈v0, u〉 ≤ 0, 〈δ(H), u〉 = 0,

0 < rku < rk v0

}
.

For a fixed v0 and H , U is a finite set. For u ∈ U , we define a wall Wu ⊂ δ(H⊥)⊗Q R with respect to v by

(3.18) Wu := {α ∈ δ(H⊥)⊗ R| 〈v0 + α, u〉 = 0}.
A connected component of δ(H⊥)⊗Q R \ ∪u∈UWu is said to be a chamber.

Lemma 3.3.1. If α does not lie on any wall Wu, u ∈ U , then M
v0+α

H (v0) = Mv0+α
H (v0). In particular,

M
v0+α

H (v0) is a K3 surface.

We are interested in the v0 + α-twisted stability with a sufficiently small |〈α2〉|. So we may assume that

(3.19) u ∈ U ′ := {u ∈ U|〈v0, u〉 = 0}.
For an α ∈ δ(H⊥) with |〈α2〉| ≪ 1, let F be a v0 + α-twisted stable torsion free object such that

(i) 〈v(F )2〉 = −2,
(ii) 〈v(F ), δ(H)〉/ rkF = (c1(F ), H)/ rkF − (ξ0, H)/r0 = 0 and
(iii) 〈v0, v(F )〉 = 〈α, v(F )〉 = 0.

By (i), F is a rigid torsion free object.

Proposition 3.3.2. ([O-Y, Prop. 1.12]) We set α± := ±ǫv(F ) + α, where 0 < ǫ≪ 1. Then TF induces an
isomorphism

(3.20)
Mv+α−

H (v)ss → Mv+α+

H (v)ss

E 7→ TF (E)

which preserves the S-equivalence classes. Hence we have an isomorphism

(3.21) M
v+α−

H (v)→M
v+α+

H (v).

Remark 3.3.3. In [O-Y], we considered the functor TF [−1].
Combining Proposition 3.3.2 with Lemma 2.3.20, we get the following Corollary.
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Corollary 3.3.4.

(3.22) ΦEv0+α+

X′→X
∼= TF ◦ ΦEv0+α−

X′→X
∼= ΦEv0+α−

X′→X ◦ TA,

where A := Φ
(Ev0+α−

)∨[2]
X→X′ (F ).

Assume that Ev0+α|{x′}×X is S-equivalent to ⊕iE′
i
⊕a′i . Then α ∈ (

∑
iQv(E

′
i))

⊥.

Remark 3.3.5. If α belongs to exactly one wallWu, u ∈ U , then there is a v+α-twisted stable object F with
v(F ) = u. So we can apply Propositions 3.3.2. Moreover A = OC(b), where C is a smooth rational curve
defined by

(3.23) C := {x′ ∈ X ′|Ext2(Ev0+α−

|{x′}×X , F ) 6= 0}.

Proposition 3.3.6. Let G be an object of D(X) such that χ(G,Eij) > 0 for all i, j and

Hom(G,Eij [k]) =Hom(G,E[k]) = 0, k 6= 2(3.24)

for all E ∈MG1

H (v0) and i, j. Assume that α ∈ δ(H⊥) \ ∪u∈U ′Wu is sufficiently small.

(1) Gα := Φα(G) is a locally free sheaf on X ′ and A′ := π∗((G
α)∨ ⊗ Gα) is a reflexive sheaf on Y ′

which is independent of the choice of α.
(2) Rπ∗((G

α)∨ ⊗ ) ◦ Φα : D(X)→ DA′(Y ′) is independent of the choice of α.

Proof. We take a small α ∈ δ(H⊥) with −〈α, v(Eij)〉 > 0, j > 0. By the base change theorem, Gα is a locally
free sheaf on X ′. Let A′

ij be objects of Per(X ′/Y ′) in subsection 3.2. Then we have Hom(Gα, A′
ij [k]) =

0 for k 6= 0 and Hom(Gα, A′
ij) 6= 0. Assume that α′ ∈ δ(H⊥) belongs to another chamber. We set

X ′′ := Mv0+α
′

H (v0). By Proposition 3.2.13 (2), X ′′ ∼= M
Gα,Φα(α′)

Ĥ
(̺X′) and F := Φ

(Eα)∨[2]
X→X′ (Eα′

) is the

universal family of Φα(α′)-twisted stable objects, where Eα′

is the universal family associated to α′. We

have Φα
′

= Φ
F∨[2]
X′→X′′ ◦ Φα. In particular, Gα

′

= Φ
F∨[2]
X′→X′′(Gα). Then the claim follows from Proposition

2.3.4. �

3.4. A tilting appeared in [Br4] and its generalizations. From now on, we assume that α satisfies
−〈α, v(Eij)〉 > 0 for all j > 0 and set

(3.25) Φ := Φα, Φ̂ := Φ̂α.

By Proposition 3.3.6, the assumption is not essential.

Definition 3.4.1. We set

(3.26) Ci :=





C, i = 1,

Per(X ′/Y ′), i = 2,

Per(X ′/Y ′)D, i = 3.

For an object E ∈ Ci, we define the Gi-twisted Hilbert polynomial by

(3.27) χ(Gi, E(n)) :=
∑

j

(−1)j dimHom(Gi, E(n)[j]),

where E(n) := E(nH), i = 1 and E(n) := E(nĤ), i = 2, 3.

Then Lemma 3.1.3 and Lemma 3.2.10 imply the following.

Lemma 3.4.2. χ(Gi, E(n)) > 0 for E 6= 0 and n ≫ 0, that is, (i) rkE > 0 or (ii) rkE = 0, degGi
(E) > 0

or (iii) rkE = degGi
(E) = 0, χ(Gi, E) > 0.

Definition 3.4.3. Let E 6= 0 be an object of Ci.

(1) There is a (unique) filtration

(3.28) 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = E

such that each Ej := Fj/Fj−1 is a torsion object or a torsion free G-twisted semi-stable object and

(3.29) (rkEj+1)χ(Gi, Ej(n)) > (rkEj)χ(Gi, Ej+1(n)), n≫ 0.

We call it the Harder-Narasimhan filtration of E.
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(2) In the notation of (1), we set

µmax,Gi
(E) :=

{
µGi

(E1), rkE1 > 0

∞, rkE1 = 0,

µmin,Gi
(E) :=

{
µGi

(Es), rkEs > 0

∞, rkEs = 0.

(3.30)

Remark 3.4.4. An object E 6= 0 has a torsion if and only if µmax,Gi
(E) =∞ and E is a torsion object if and

only if µmin,Gi
(E) =∞.

We define several torsion pairs of Ci.

Definition 3.4.5. (1) Let Tµi (resp. T
µ

i ) be the full subcategory of Ci such that E ∈ Ci belongs to T
µ
i

(resp. T
µ

i ) if (i) E is a torsion object or (ii) µmin,Gi
(E) > 0 (resp. µmin,Gi

(E) ≥ 0).

(2) Let Fµi (resp. F
µ

i ) be the full subcategory of Ci such that E ∈ Ci belongs to T
µ
i (resp. F

µ

i ) if E = 0
or E is a torsion free object with µmax,Gi

(E) ≤ 0 (resp. µmax,Gi
(E) < 0).

Definition 3.4.6. (1) Let Ti (resp. Ti) be the full subcategory of Ci such that E ∈ Ci belongs to Ti
(resp. Ti) if (i) E is a torsion object or (ii) for the Harder-Narasimhan filtration (3.28) of E, Es
satisfies µGi

(Es) > 0 or µGi
(Es) = 0 and χ(Gi, Es) > 0 (resp. µGi

(Es) = 0 and χ(Gi, Es) ≥ 0).
(2) Let Fi (resp. Fi) be the full subcategory of Ci such that E ∈ Ci belongs to Fi (resp. Fi) if E is a

torsion free object and for the Harder-Narasimhan filtration (3.28) of E, E1 satisfies µGi
(E1) < 0

or µGi
(E1) = 0 and χ(Gi, E1) ≤ 0 (resp. µGi

(E1) = 0 and χ(Gi, E1) < 0).

Definition 3.4.7. (Tµi ,F
µ
i ), (T

µ

i ,F
µ

i ), (Ti,Fi) and (Ti,Fi) are torsion pairs of Ci. We denote the tiltings of

Ci by A
µ
i , A

µ

i , Ai and Ai respectively.

We note that Tµ1 ⊂ T1. We shall study the condition T
µ
1 = T1. We start with the following lemma.

Lemma 3.4.8. Let E be a local projective generator of Ci. Then Ext1(E,F ) = 0 for all 0-dimensional
objects F of Ci. In particular, if E is a subobject of a torsion free object E′ such that E′/E is 0-dimensional,
then E′ = E.

Proof. We only treat the case where i = 1. Then Rπ∗(E
∨ ⊗ F ) = π∗(E

∨ ⊗ F ) is a 0-dimensional sheaf on
Y . Hence we get Ext1(E,F ) = H1(Y, π∗(E

∨ ⊗ F )) = 0. �

Lemma 3.4.9. Assume that E|{x′}×X is a µ-stable local projective generator of C for a general x′ ∈ X ′.

(1) T1 = T
µ
1 .

(2) Every µ-semi-stable object E ∈ C with degG1
(E) = χ(G1, E) = 0 is G1-twisted semi-stable. More-

over if E is G1-twisted stable, then it is µ-stable.
(3) Let E be a µ-semi-stable object E ∈ C with rkE > 0, degG1

(E) = χ(G1, E) = 0. Then Exti(E, S) =
0, i 6= 0 for any irreducible object S ∈ C.

(4) E|{x′}×X is a local projective generator of C for any x′ ∈ X ′.

Proof. (1) Let E be a µ-stable object of C with degG1
(E) = 0 and χ(G1, E) > 0. Since Hom(E, E|{x′}×X) = 0

for all x′ ∈ X ′, Hom(E|{x′}×X , E) 6= 0 for all x′ ∈ X ′. Assume that E|{x′}×X is a µ-stable local projective
generator. By Lemma 3.4.8 and Hom(E|{x′}×X , E) 6= 0, we get E ∼= E|{x′}×X . Therefore χ(G1, E) ≤ 0 for
all µ-stable object E ∈ C with degG1

(E) = 0. Hence we get T1 = T
µ
1 .

(2) Let E′ be a subobject of E with degG1
(E) = 0. Then (1) implies that χ(G1, E

′) ≤ 0. Hence E
is G1-twisted semi-stable. If E/E′ is torsion free, then we also have χ(G1, E/E

′) ≤ 0, which implies that
χ(G1, E

′) = χ(G1, E/E
′) = 0. Thus E is properly G1-twisted semi-stable. Therefore the second claim also

holds.
(3) If Ext1(S,E) = Ext1(E, S)∨ 6= 0, then a non-trivial extension

(3.31) 0→ E → E′ → S → 0

gives a µ-semi-stable object E′ with χ(G1, E
′) = χ(G1, S) > 0. On the other hand, (1) implies that

χ(G1, E
′) ≤ 0. Therefore Ext1(E, S) = 0. Since S is a torsion object, Ext2(E, S) ∼= Hom(S,E)∨ = 0.

(4) Since E|{x′}×X is a µ-semi-stable object with degG1
(E|{x′}×X) = χ(G1, E|{x′}×X) = 0, E|{x′}×X ∈ C

and satisfies the assertion of (3). By Lemma 3.4.2, χ(E|{x′}×X , S) = χ(G1, S) > 0 for any irreducible object
S. Then E|{x′}×X is locally free and is a local projective generator by Proposition 1.1.22. �

Remark 3.4.10. By the proof of Lemma 3.4.9, E|{x′}×X , x′ ∈ X ′ is a local projective generator of C if
T1 = T

µ
1 . Indeed if T1 = T

µ
1 , then the same proofs of (2), (3) and (4) work.
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3.5. Equivalence between A1 and A
µ
2 .

Lemma 3.5.1. (1) If E ∈ T1, then Hom(E,Eij) = Hom(E, E|{x′}×X) = 0 for all i, j and x′ ∈ X ′. In

particular, H2(Φ(E)) = 0.
(2) If E ∈ F1, then Hom(E|{x′}×X , E) = 0 for a general x′ ∈ X ′. In particular, H0(Φ(E)) = 0.

Proof. (1) The first claim is obvious. The second claim is a consequence of the Serre duality and the base
change theorem (see the proof of Lemma 3.5.2 (2)).

(2) If there is a non-zero morphism φ : E|{x′}×X → E, we see that φ is injective and cokerφ ∈ F1. By the
induction on rkE, we get the first claim. The second claim follows by the base change theorem. �

Lemma 3.5.2. Let E be an object of C.
(1) Assume that Hom(Eij , E[q]) = Hom(E|{x′}×X , E[q]) = 0 for all i, j, x′ ∈ X ′ and q > 0. Then

Φ(E) ∈ Per(X ′/Y ′).
(2) There is a complex

(3.32) 0→W0 →W1 →W2 → 0

such thatWi are local projective objects of Per(X
′/Y ′) and Φ(E) is quasi-isomorphic to this complex.

(3) H0(pH2(Φ(E))) = H2(Φ(E)) and pH0(Φ(E)) ⊂ H0(Φ(E)). In particular, pH0(Φ(E)) is torsion
free.

(4) If Hom(E,Eij) = 0 for all i, j and Hom(E, E|{x′}×X) = 0 for all x′ ∈ X ′, then pH2(Φ(E)) = 0. In

particular, if E ∈ T1, then
pH2(Φ(E)) = 0.

(5) If E ∈ F1, then
pH0(Φ(E)) = 0.

Proof. (1) We note that F ∈ Per(X ′/Y ′) is 0 if and only if Hom(F,A′
ij) = Hom(F,A′

i0) = Hom(F,Cx′) = 0

for all i, j > 0 and x′ ∈ X ′. Since

Hom(Φ(E)[q],Φ(Eij)[2]) ∼= Hom(E[q], Eij [2]) ∼= Hom(Eij , E[q])∨,

Hom(Φ(E)[q],Φ(E|{x′}×X)[2]) ∼= Hom(E[q], E|{x′}×X [2]) ∼= Hom(E|{x′}×X , E[q])∨,
(3.33)

we have pHq(Φ(E)) = 0 for q > 0, which implies that Φ(E) ∈ Per(X ′/Y ′). Thus the claim (1) holds.
(2)
We take a resolution of E

(3.34) 0→ V−2 → V−1 → V0 → E → 0

such that V−k = G(−nk)⊕Nk , nk ≫ 0 for k = 0, 1, where G is a local projective generator of C. By using
the Serre duality, our choice of nk implies that Hom(E|{x′}×X , V−k[q]) = Hom(Eij , V−k[q]) = 0 for q 6= 2 and
k = 0, 1. Then we also have Hom(E|{x′}×X , V−2[q]) = Hom(Eij , V−2[q]) = 0 for q 6= 2. Hence Φ(V−k)[2],
k = 0, 1, 2 are locally free sheaves on X ′. Since Hom(Φ(V−k)[2], A

′
ij [q]) = Hom(Φ(V−k)[2],Φ(Eij)[2 + q]) =

Hom(V−k, Eij [q]) = 0, q > 0, W2−k := Φ(V−k)[2], k = 0, 1, 2 are local projective objects of Per(X ′/Y ′) and
the associated complex W• defines the required complex.

(3) is obvious. (4) follows from the proof of (1) and Lemma 3.5.1 (1). (5) follows from (3) and Lemma
3.5.1 (2). �

Definition 3.5.3. (1) We set Φi(E) := pHi(Φ(E)) ∈ Per(X ′/Y ′) and Φ̂i(E) := pHi(Φ̂(E)) ∈ C.
(2) We say that WITi holds for E ∈ C (resp. F ∈ Per(X ′/Y ′)) with respect to Φ (resp. Φ̂), if Φj(E) = 0

(resp. Φ̂j(F )) = 0) for j 6= i.

Lemma 3.5.4. Let E be an object of C.
(1) If WIT0 holds for E with respect to Φ, then E ∈ T1.
(2) If WIT2 holds for E with respect to Φ, then E ∈ F1. In particular, E is torsion free. Moreover if

Φ2(E) does not contain a 0-dimensional object, then E ∈ F
µ

1 .

Proof. For an object E ∈ C, there is an exact sequence

(3.35) 0→ E1 → E → E2 → 0

such that E1 ∈ T1 and E2 ∈ F1. Applying Φ to this exact sequence, we get a long exact sequence

(3.36)

0 −−−−→ Φ0(E1) −−−−→ Φ0(E) −−−−→ Φ0(E2)

−−−−→ Φ1(E1) −−−−→ Φ1(E) −−−−→ Φ1(E2)

−−−−→ Φ2(E1) −−−−→ Φ2(E) −−−−→ Φ2(E2) −−−−→ 0.
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By Lemma 3.5.2 (4),(5), Φ0(E2) = Φ2(E1) = 0. If WIT0 holds for E, then we get Φ(E2) = 0. Hence (1)
holds. If WIT2 holds for E, then we get Φ(E1) = 0. Thus the first part of (2) holds. Assume that there is
an exact sequence

(3.37) 0→ E′
2 → E → E′′

2 → 0

such that E′
2 is a µ-semi-stable object with degG1

(E′
2) = 0 and E′′

2 ∈ F
µ

1 . By the first part of (2), we get

χ(G1, E
′
2) ≤ 0. By Lemma 3.5.1 (2), Φ0(E′′

2 ) = 0. Then we see that WIT2 holds for E
′
2 and degG2

(Φ2(E′
2)) =

degG1
(E′

2) = 0. Since rkΦ2(E′
2) = χ(G1, E

′
2) ≤ 0, Φ2(E′

2) is a 0-dimensional object. By our assumption, we

get that Φ1(E′′
2 )→ Φ2(E′

2) is an isomorphism. By Lemma 6.3.1 in the appendix, we have Φ̂0(Φ1(E′′
2 )) = 0,

which implies that E′
2
∼= Φ̂0(Φ2(E′

2)) = 0. �

Lemma 3.5.5. For an object E ∈ C, degG2
(Φ0(E)) ≤ 0 and degG2

(Φ2(E)) ≥ 0.

Proof. We note that

(3.38) Φ̂(Φ0(E)) = Φ̂2(Φ0(E))[−2], Φ̂(Φ2(E)) = Φ̂0(Φ2(E))

and

(3.39) degG2
(Φ0(E)) = − degG1

(Φ̂2(Φ0(E))), degG2
(Φ2(E)) = − degG1

(Φ̂0(Φ2(E))).

Since Φ̂2(Φ0(E)) satisfies WIT0 with respect to Φ, Φ̂2(Φ0(E)) ∈ T1, which implies that degG1
(Φ̂2(Φ0(E))) ≥

0. Since Φ̂0(Φ2(E)) satisfies WIT2 with respect to Φ, Φ̂0(Φ2(E)) ∈ F1, which implies that degG1
(Φ̂0(Φ2(E))) ≤

0. Therefore our claims hold. �

Lemma 3.5.6. (1) If F ∈ T
µ
2 , then Φ̂2(F ) = 0.

(2) If WIT0 holds for F ∈ Per(X ′/Y ′) with respect to Φ̂, then F ∈ T
µ
2 .

(3) If F ∈ F
µ
2 , then Φ̂0(F ) = 0.

(4) If WIT2 holds for F ∈ Per(X ′/Y ′) with respect to Φ̂, then F ∈ F
µ
2 .

Proof. (1) By Lemma 6.3.1 in the appendix, we have an exact sequence

(3.40) F → Φ0(Φ̂2(F ))
φ→ Φ2(Φ̂1(F ))→ 0.

By Lemma 3.5.5, degG2
(kerφ) ≤ 0. Since Φ0(Φ̂2(F )) is torsion free, kerφ is also torsion free. By our

assumption of F , we have kerφ = 0. Then Φ0(Φ̂2(F )) ∼= Φ2(Φ̂1(F )) satisfies WIT0 and WIT2, which implies

that Φ0(Φ̂2(F )) ∼= Φ2(Φ̂1(F )) ∼= 0. Therefore Φ̂2(F ) = 0.
(2) Assume that there is an exact sequence

(3.41) 0→ F1 → F → F2 → 0

such that F1 ∈ T
µ
2 and F2 ∈ F

µ
2 . By (1), we have Φ̂2(F1) = 0. By a similar exact sequence to (3.36), we see

that WIT0 holds for F2 and degG1
(Φ̂0(F2)) = − degG2

(F2) ≥ 0. On the other hand, since WIT2 holds for

Φ̂0(F2), Lemma 3.5.4 implies that Φ̂0(F2) ∈ F1. Hence degG1
(Φ̂0(F2)) = 0 and χ(G1, Φ̂

0(F2)) ≤ 0. Since

χ(G1, Φ̂
0(F2)) = rkF2, we have rkF2 = 0. Since F

µ
2 contains no torsion object except 0, we conclude that

F2 = 0.
(3) By Lemma 6.3.1, we have an exact sequence

(3.42) 0→ Φ0(Φ̂1(F ))
ψ→ Φ2(Φ̂0(F ))→ F.

By (2), Φ2(Φ̂0(F )) ∈ T
µ
2 , which implies that cokerψ = 0. Then Φ0(Φ̂1(F )) ∼= Φ2(Φ̂0(F )) satisfies WIT0 and

WIT2, which implies that Φ0(Φ̂1(F )) ∼= Φ2(Φ̂0(F )) ∼= 0. Therefore Φ̂0(F ) = 0.
(4) Assume that there is an exact sequence

(3.43) 0→ F1 → F → F2 → 0

such that 0 6= F1 ∈ T
µ
2 and F2 ∈ F

µ
2 . By (3), Φ̂0(F2) = 0. By a similar exact sequence to (3.36), we see that

WIT2 holds for F1 and degG1
(Φ̂2(F1)) = − degG2

(F1) ≤ 0. Moreover if rkF1 > 0, then degG1
(Φ̂2(F1)) < 0.

On the other hand, since WIT0 holds for Φ̂2(F1), Lemma 3.5.4 implies that Φ̂2(F1) ∈ T1. Hence rkF1 = 0

and degG1
(Φ̂2(F1)) = 0. Then Φ̂2(F1) ∈ T1 implies that 0 < χ(G1, Φ̂

2(F1)) = rkF1, which is a contradiction.
Therefore F1 = 0. �

Lemma 3.5.7. (1) Assume that E ∈ T1. Then
(a) Φ0(E) ∈ F

µ
2 .

(b) Φ1(E) ∈ T
µ
2 .

(c) Φ2(E) = 0.
(2) Assume that E ∈ F1. Then

46



(a) Φ0(E) = 0.
(b) Φ1(E) ∈ F

µ
2 .

(c) Φ2(E) ∈ T
µ
2 .

Proof. We take a decomposition

(3.44) 0→ F1 → Φ1(E)→ F2 → 0

with F1 ∈ T
µ
2 and F2 ∈ F

µ
2 . Applying Φ̂, we have an exact sequence

(3.45)

0 −−−−→ Φ̂0(F1) −−−−→ Φ̂0(Φ1(E)) −−−−→ Φ̂0(F2)

−−−−→ Φ̂1(F1) −−−−→ Φ̂1(Φ1(E)) −−−−→ Φ̂1(F2)

−−−−→ Φ̂2(F1) −−−−→ Φ̂2(Φ1(E)) −−−−→ Φ̂2(F2) −−−−→ 0.

By Lemma 3.5.6, we have Φ̂0(F2) = Φ̂2(F1) = 0.
(1) Assume that E ∈ T1. Then (a) follows from Lemma 3.5.6 (4), and (c) follows from Lemma 3.5.2 (4).

We prove (b). We assume that F2 6= 0. By Lemma 6.3.1 and (c), we have Φ̂2(Φ1(E)) = 0. Then WIT1 holds

for F2 and degG1
(Φ̂1(F2)) = degG2

(F2) ≤ 0. By Lemma 6.3.1, we have a surjective homomorphism

(3.46) E → Φ̂1(Φ1(E)).

Hence Φ̂1(F2) is a quotient object ofE. Since E ∈ T1, we see that degG1
(Φ̂1(F2)) ≥ 0. Hence degG1

(Φ̂1(F2)) =

0. If rk Φ̂1(F2) > 0, then since χ(G1, Φ̂
1(F2)) = − rkF2 < 0, we get E 6∈ T1. Hence rk Φ̂1(F2) = 0. Then

χ(G1, Φ̂
1(F2)) = − rkF2 < 0 implies that the G1-twisted Hilbert polynomial of Φ̂1(F2) is not positive. By

Lemma 3.4.2, this is impossible. Therefore F2 = 0.
(2) Assume that E ∈ F1. By Lemma 3.5.2 and Lemma 3.5.6, (a) and (c) hold. We prove (b). Assume

that F1 6= 0. By Φ0(E) = 0 and Lemma 6.3.1, we have Φ̂0(Φ1(E)) = 0. Then WIT1 holds for F1 and we

have an injective morphism Φ̂1(F1) → Φ̂1(Φ1(E)) → E. Assume that dimF1 ≥ 1. Since degG1
(Φ̂1(F1)) =

degG2
(F1) > 0, this is impossible. Assume that dimF1 = 0. Then χ(G2, F1) > 0, which implies that

rk Φ̂1(F1) = −χ(G2, F1) < 0. This is a contradiction. Therefore F1 = 0. �

The following is a generalization of a result in [H] (see Remark 3.5.9 below).

Theorem 3.5.8. Φ induces an equivalence A1 → A
µ
2 [−1]. Moreover Φ̂0(F ) ∈ F

µ

1 if F ∈ T
µ
2 does not contain

a 0-dimensional object.

Proof. For E ∈ A1, we have an exact sequence in A1

(3.47) 0→ H−1(E)[1]→ E → H0(E)→ 0.

Then we have an exact triangle

(3.48) Φ(H−1(E))[2]→ Φ(E[1])→ Φ(H0(E))[1]→ Φ(H−1(E))[3].

Hence Φi(E[1]) = 0 for i 6= −1, 0 and we have an exact sequence

(3.49)
0 −−−−→ Φ1(H−1(E)) −−−−→ Φ−1(E[1]) −−−−→ Φ0(H0(E))

−−−−→ Φ2(H−1(E)) −−−−→ Φ0(E[1]) −−−−→ Φ1(H0(E)) −−−−→ 0.

By Lemme 3.5.7, Φ−1(E[1]) ∈ F
µ
2 and Φ0(E[1]) ∈ T

µ
2 . Therefore Φ(E[1]) ∈ A

µ
2 .

Conversely for F ∈ A
µ
2 and E1 ∈ A1, Φ(E1)[1] ∈ A

µ
2 implies that

Hom(Φ̂(F )[1], E1[p]) = Hom(F, (Φ(E1)[1])[p]) = 0, p < 0,

Hom(E1[p], Φ̂(F )[1]) = Hom((Φ(E1)[1])[p], F ) = 0, p > 0.
(3.50)

Hence Φ̂(F )[1] ∈ A1. Therefore the first claim holds.
For the last claim, we note that there is an exact sequence

(3.51) 0→ Φ0(Φ̂1(F ))→ Φ2(Φ̂0(F ))→ F

by Lemma 6.3.1. By Lemma 3.5.2 (3), Φ0(Φ̂1(F )) is torsion free. Hence Φ2(Φ̂0(F )) does not contain a
0-dimensional object. Then Lemma 3.5.4 (2) implies the claim. �

Remark 3.5.9. In [Y5], we gave a different proof of [H, Prop. 4.2]. Since we used different notations in [Y5],
we explain the correspendence of the terminologies: Φ corresponds to FE in [Y5], Aµ2 corresponds to A1 in
[Y5, Thm. 2.1] and A1 corresponds to A2 or A′

2 in [Y5, Thm. 2.1, Prop. 2.7].
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3.6. Fourier-Mukai duality for a K3 surface. In this subsection, we shall prove a kind of duality property

between (X,H) and (X ′, Ĥ). In other words, we show that X is the moduli space of some objects on X ′

and H is the natural determinant line bundle on the moduli space.

Theorem 3.6.1. Assume that Cx is β-stable for all x ∈ X.

(1) E|X′×{x} ∈ Per(X ′/Y ′)D is G3 − Φ(β)∨-twisted stable for all x ∈ X and we have an isomorphism

φ : X → M
G3−Φ(β)∨

Ĥ
(w∨

0 ) by sending x ∈ X to E|X′×{x} ∈ M
G3−Φ(β)∨

Ĥ
(w∨

0 ). Moreover we have

H = (̂Ĥ) under this isomorphism.
(2) Assume that E|{x′}×X is a µ-stable local projective generator of C for a general x′ ∈ X ′. Then

E|X′×{x} is a µ-stable local projective generator of Per(X ′/Y ′)D for x ∈ X \ ∪iZi.
The proof is similar to that in [Y5, Thm. 2.2]. In particular, if E|{x′}×X is a µ-stable locally free sheaf

for a general x′ ∈ X ′, then the same proof in [Y5] works. However if E|{x′}×X is not a µ-stable locally free
sheaf for any x′ ∈ X ′, then we need to introduce a (contravariant) Fourier-Mukai transforms and study their
properties. We set

Ψ(E) :=RHompX′ (p
∗
X(E), E) = Φ(E)∨[−2], E ∈ D(X),

Ψ̂(F ) :=RHompX (p∗X′(F ), E), F ∈ D(X ′).
(3.52)

We shall first study the properties of Ψ and Ψ̂ which are similar to those of Φ and Φ̂.
We set

Ψ(Eij)[2] = B′
ij , j > 0

Ψ(Ei0)[2] = B′
i0.

(3.53)

Then the following claims follow from Definition 3.2.8 and Lemma 3.2.7.

Lemma 3.6.2. (1) B′
ij = OC′

ij
(−b′ij−2) ∈ Per(X ′/Y ′)D and B′

i0 = A0(−b′+2b0)
∗[1] ∈ Per(X ′/Y ′)D.

(2) Irreducible objects of Per(X ′/Y ′)D are

(3.54) B′
ij (1 ≤ i ≤ m, 0 ≤ j ≤ s′i), Cx′(x′ ∈ X \ ∪iZ ′

i).

Lemma 3.6.3. (1) Assume that E ∈ T1. Then Hom(E, E|{x′}×X) = 0 for a general x′ ∈ X ′.

(2) Assume that E ∈ F1. Then Hom(E|{x′}×X , E) = 0 for all x′ ∈ X ′.

Proof. We only prove (1). Let E be a G1-twisted stable object of C. If degG1
(E) > 0 or degG1

(E) =
0 and χ(G1, E) > 0, then Hom(E, E|{x′}×X) = 0 for all x′ ∈ X ′. Assume that degG1

(E) = 0 and
χ(G1, E) = 0. Then a non-zero homomorphism E → E|{x′}×X is an isomorphism if x′ 6∈ ∪iZ ′

i. There-
fore Hom(E, E|{x′}×X) = 0 for a general x′ ∈ X ′. �

Lemma 3.6.4. Let E be an object of C.
(1) pHi(Ψ(E)) = 0 for i ≥ 3.
(2) H0(pH2(Ψ(E))) = H2(Ψ(E)).
(3) pH0(Ψ(E)) ⊂ H0(Ψ(E)). In particular, pH0(Ψ(E)) is torsion free.
(4) If Hom(E,Eij [2]) = 0 for all i, j and Hom(E, E|{x′}×X [2]) = 0 for all x′ ∈ X ′, then pH2(Ψ(E)) = 0.

In particular, if E ∈ F1, then
pH2(Ψ(E)) = 0.

(5) If E satisfies E ∈ T1, then
pH0(Ψ(E)) = 0.

Proof. Let W• be the complex in Lemma 3.5.2 (2). By Remark 1.1.9, W∨
i are local projective objects of

Per(X ′/Y ′)D. Since Ψ(E) is represented by the complex W∨
• [−2], (1), (2) and (3) follow.

By Lemma 3.6.2, F ∈ Per(X ′/Y ′)D is 0 if and only if Hom(F,B′
ij) = Hom(F,Cx′) = 0 for all i, j and

x′ ∈ X ′.
Since

Hom(E,Eij [2− p])∨ ∼= Hom(Ψ(E)[2 − p],Ψ(Eij)[2]),

Hom(E, E|{x′}×X [2− p])∨ ∼= Hom(Ψ(E)[2 − p],Ψ(E|{x′}×X)[2]),
(3.55)

we have (4). (5) follows from (3) and Lemma 3.6.3 (1). �

Definition 3.6.5. We set Ψi(E) := pHi(Ψ(E)) ∈ Per(X ′/Y ′)D and Ψ̂i(E) := pHi(Ψ̂(E)) ∈ C.
Lemma 3.6.6. Let E be an object of C.

(1) If WIT0 holds for E with respect to Ψ, then E ∈ F1.
(2) If WIT2 holds for E with respect to Ψ, then E ∈ T1. If Ψ2(E) does not contain a 0-dimensional

object, then E ∈ T1.
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Proof. For an object E of C, there is an exact sequence

(3.56) 0→ E1 → E → E2 → 0

such that E1 ∈ T1 and E2 ∈ F1. Applying Ψ to this exact sequence, we get a long exact sequence

(3.57)

0 −−−−→ Ψ0(E2) −−−−→ Ψ0(E) −−−−→ Ψ0(E1)

−−−−→ Ψ1(E2) −−−−→ Ψ1(E) −−−−→ Ψ1(E1)

−−−−→ Ψ2(E2) −−−−→ Ψ2(E) −−−−→ Ψ2(E1) −−−−→ 0

By Lemma 3.6.4, we have Ψ0(E1) = Ψ2(E2) = 0. If WIT0 holds for E, then we get Ψ(E1) = 0. Hence (1)
holds. If WIT2 holds for E, then we get Ψ(E2) = 0. Thus the first part of (2) holds. Assume that Ψ2(E)
does not have a non-zero 0-dimensional subobject. We take a decomposition

(3.58) 0→ E1 → E → E2 → 0

such that E1 ∈ T1 and E2 is a G1-twisted semi-stable object with degG1
(E2) = χ(G1, E2) = 0. Then

Ψ0(E1) = Ψ0(E2) = Ψ1(E2) = 0. In particular, WIT2 holds for E2 with respect to Ψ. Then Ψ2(E2) is a
torsion object with degG3

(Ψ2(E2)) = 0, which implies that Ψ2(E2) is 0-dimensional. Our assumption implies

that Ψ1(E1) ∼= Ψ2(E2). By Lemma 6.3.2 and Ψ̂0(Ψ0(E1)) = 0, we get E2 = Ψ̂2(Ψ2(E2)) = Ψ̂2(Ψ1(E1)) =
0. �

Lemma 3.6.7. Let E be a µ-semi-stable object with degG1
(E) = 0. If WIT0 holds for E, then E = 0.

Proof. If WIT0 holds for E 6= 0, then χ(G1, E) = rkΨ(E) ≥ 0. On the other hand, Lemma 3.6.6 implies
that χ(G1, E) < 0. Therefore E = 0. �

Lemma 3.6.8. If WIT0 holds for E with respect to Ψ, then E ∈ F
µ

1 .

Proof. Assume that there is an exact sequence

(3.59) 0→ E1 → E → E2 → 0

such that E1 is a µ-semi-stable object with degG1
(E1) = 0 and E2 ∈ F

µ

1 . Then we have Ψ2(E2) = 0. By the
exact sequence (3.57), WIT0 holds for E1. Then Lemma 3.6.7 implies that E1 = 0. �

Lemma 3.6.9. If E ∈ T
µ

1 , then Ψ0(E) = 0.

Proof. We may assume that E is a µ-semi-stable object or a torsion object. If degG1
(E) > 0, then the claim

holds by the base change theorem. Assume that degG1
(E) = 0. By Lemma 6.3.2, we have an exact sequence

(3.60) E → Ψ̂0(Ψ0(E))→ Ψ̂2(Ψ1(E))→ 0.

By Lemma 3.6.8, Ψ̂0(Ψ0(E)) ∈ F
µ

1 . Since E is a µ-semi-stable object with degG1
(E) = 0, E → Ψ̂0(Ψ0(E))

is a zero map. Then Ψ̂0(Ψ0(E)) ∼= Ψ̂2(Ψ1(E)) satisfies WIT0 and WIT2, which implies that Ψ̂0(Ψ0(E)) ∼=
Ψ̂2(Ψ1(E)) ∼= 0. Therefore Ψ0(E) = 0. �

Lemma 3.6.10.

(3.61) degG3
(Ψ0(E)) ≤ 0, degG3

(Ψ2(E)) ≥ 0.

Proof. We note that

(3.62) degG3
(Ψi(E)) = degG1

(Ψ̂i(Ψi(E)))

for i = 0, 2 by Lemma 6.3.2. Then the claim follows from Lemma 3.6.6. �

Proof of Theorem 3.6.1.
(1) We first prove the G3-twisted semi-stability of E|X′×{x} for all x ∈ X . It is sufficient to prove the

following lemma.

Lemma 3.6.11. Let E be a 0-dimensional object of C. Then WIT2 holds for E with respect to Ψ and Ψ2(E)
is a G3-twisted semi-stable object such that degG3

(Ψ2(E)) = χ(G3,Ψ
2(E)) = 0. Moreover if E is irreducible,

then Ψ2(E) is G3-twisted stable.

Proof. We first prove that E satisfies WIT2 with respect to Ψ. We may assume that E is irreducible. Then
we get Hom(E, E|{x′}×X) = 0 for all x′. Hence Ψ0(E) = 0. We shall prove that Ψ1(E) = 0 by showing

Ψ̂i(Ψ1(E)) = 0 for i = 0, 1, 2. By Lemma 6.3.2, Ψ̂2(Ψ1(E)) = 0 and we have an exact sequence

(3.63) 0→ Ψ̂0(Ψ1(E))→ Ψ̂2(Ψ2(E))→ E → Ψ̂1(Ψ1(E))→ 0.

By Lemma 3.6.6 and Lemma 6.3.2, Ψ̂0(Ψ1(E)) ∈ F1 and Ψ̂2(Ψ2(E)) ∈ T1. Since E is 0-dimensional,

Ψ̂0(Ψ1(E)) is µ-semi-stable and degG1
(Ψ̂0(Ψ1(E))) = degG1

(Ψ̂2(Ψ2(E))) = 0. By Lemma 3.6.7, Ψ̂0(Ψ1(E)) =
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0. Since E is an irreducible object, Ψ̂2(Ψ2(E)) = 0 or Ψ̂1(Ψ1(E)) = 0. If Ψ̂2(Ψ2(E)) = 0, then Ψ2(E) = 0.

Since χ(G1, E) > 0, we get a contradiction. Hence we also have Ψ̂1(Ψ1(E)) = 0, which implies that
Ψ1(E) = 0. Therefore WIT2 holds for E with respect to Ψ.

We next prove that Ψ2(E) is G3-twisted semi-stable. Assume that there is an exact sequence

(3.64) 0→ F1 → Ψ2(E)→ F2 → 0

such that F1 ∈ Per(X ′/Y ′)D, degG3
(F1) ≥ 0 and F2 ∈ Per(X ′/Y ′)D. Applying Ψ̂ to this exact sequence,

we get a long exact sequence

(3.65)

0 −−−−→ Ψ̂0(F2) −−−−→ 0 −−−−→ Ψ̂0(F1)

−−−−→ Ψ̂1(F2) −−−−→ 0 −−−−→ Ψ̂1(F1)

−−−−→ Ψ̂2(F2) −−−−→ E −−−−→ Ψ̂2(F1) −−−−→ 0.

By Lemma 6.3.2, WIT2 holds for Ψ̂
2(F2). Hence Ψ̂

2(F2) ∈ T1, in particular, we have degG1
(Ψ̂2(F2)) ≥ 0. By

Lemma 6.3.2, WIT0 holds for Ψ̂1(F2) ∼= Ψ̂0(F1). Hence Ψ̂
1(F2) ∈ F1, which implies that degG1

(Ψ̂1(F2)) ≤ 0.

Therefore degG1
(Ψ̂(F2)) ≥ 0. On the other hand, degG1

(Ψ̂(F2)) = degG3
(F2) ≤ 0. Hence Ψ̂1(F2) is a µ-

semi-stable object with degG1
(Ψ̂1(F2)) = 0 and degG3

(F2) = 0. Then Lemma 3.6.7 implies that Ψ̂1(F2) = 0.

If χ(G3, F2) ≤ 0, then rk Ψ̂2(F2) = χ(G3, F2) implies that χ(G3, F2) = 0 and Ψ̂2(F2) is a torsion object. This
in particular means that Ψ2(E) is G2-twisted semi-stable. We further assume that E is irreducible. Since

degG1
(Ψ̂2(F2)) = 0, Ψ̂2(F2) is a 0-dimensional object. Then WIT2 holds for Ψ̂1(F1), Ψ̂

2(F1) and Ψ̂2(F2)

with respect to Ψ. Since Ψ2(Ψ̂1(F1)) = 0, Ψ̂1(F1) = 0. Then Ψ̂2(F2) = 0 or Ψ̂2(F1) = 0, which implies that
F1 = 0 or F2 = 0. Therefore Ψ2(E) is G3-twisted stable. �

We continue the proof of (1). Assume that there is an exact sequence in Per(X ′/Y ′)D

(3.66) 0→ F1 → E|X′×{x} → F2 → 0

such that degG3
(F1) = χ(G3, F1) = 0. By the proof of Lemma 3.6.11, WIT2 holds for F1 and F2. Thus we

get an exact sequence

(3.67) 0→ Ψ̂2(F2)→ Cx → Ψ̂2(F1)→ 0

Since Cx is β-stable, χ(β, Ψ̂2(F2)) < 0, which implies that χ(−Ψ(β), F2) > 0. Therefore E|X′×{x} is

G3 − Ψ(β)-twisted stable. Then we have an injective morphism φ : X → M
G3+α

′

Ĥ (w∨
0 ) by sending x ∈ X

to E|X′×{x}, where α′ = −Ψ(β). By a standard argument, we see that φ is an isomorphism. We note

that [Ψ̂(Ĥ + (Ĥ, ξ̃0)/r0̺X′)]1 is the pull-back of the canonical polarization on M
G3

Ĥ (w∨
0 ). Hence under the

identification MG3+α
′

Ĥ
(w∨

0 )
∼= X , (̂Ĥ) = H .

(2) Assume that E|{x′}×X is a µ-stable local projective generator for a general x′ ∈ X ′. By Lemma 3.6.13
(2) below, we only need to prove the µ-stability of E|X′×{x} for x ∈ X\∪iZi. We shall study the exact sequence
(3.64) in Lemma 3.6.11, where E = Cx. We may assume that F2 satisfies degG3

(F2) = 0 and χ(G3, F2) > 0.

Then WIT2 holds for F2 by the proof of Lemma 3.6.11. We shall first prove that Ψ̂1(F1) does not contain a 0-

dimensional object. Let T1 be the 0-dimensional subobject of Ψ̂1(F1). Then we have a surjective morphism

Ψ2(Ψ̂1(F1)) → Ψ2(T1). Since WIT2 holds for T1 with respect to Ψ and Ψ0(Ψ̂0(F1)) → Ψ2(Ψ̂1(F1)) is

surjective, we get T1 = 0. By Lemma 3.6.6, Ψ̂2(F2) ∈ T1. Then Lemma 3.4.9 and degG1
(Ψ̂2(F2)) = 0

imply that Ψ̂2(F2) is an extension of a G1-semi-stable object E1 with degG1
(E1) = χ(G1, E1) = 0 by a

0-dimensional object T . Since T ∩ Ψ̂1(F1) = 0, T = Cx or 0. By our assumption, Ψ2(E1) is a torsion object.
By the exact sequence

(3.68) Ψ2(E1)→ F2 → Ψ2(T )→ 0,

we have rkF2 = (rk E|X′×{x}) dimT , which implies that rkF2 = rk E|X′×{x} or rkF2 = 0. Therefore E|X′×{x}

is µ-stable. �

Lemma 3.6.12. If E|{x′}×X , x
′ ∈ X ′ and Eij are locally free on an open subset X0 of X, then E|X′×{x} is

a local projective generator of Per(X ′/Y ′)D for x ∈ X0.

Proof. We first note that E|X′×{x} ∈ Coh(X ′) by Theorem 3.6.1. The claim follows from the following
equalities:

Hom(E|X′×{x},Cx′ [k]) = Hom(Ψ(Cx),Ψ(E|{x′}×X)[k]) = Hom(E|{x′}×X ,Cx[k]) = 0,

Hom(E|X′×{x}, B
′
ij [k]) = Hom(Ψ(Cx),Ψ(Eij)[k]) = Hom(Eij ,Cx[k]) = 0

(3.69)

for x ∈ X0, x′ ∈ X ′ and k 6= 0. �
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Lemma 3.6.13. (1) If X = Y and Y ′ is not smooth, then E|X′×{x} is a local projective generator of

Per(X ′/Y ′)D for all x ∈ X.
(2) If E|{x′}×X is a µ-stable local projective object of C for a general x′ ∈ X ′, then E|X′×{x} is a local

projective generator of Per(X ′/Y ′)D for all x ∈ X.

Proof. (1) We first note that Eij ∈ Coh(X) = C are locally free sheaves for all i, j. Assume that E := E|{x′}×X

is not locally free for a point x′ ∈ X ′. Then we have a morphism from an open subscheme Q of QuotnE∨∨/X/C

to X ′, where n = dim(E∨∨/E). Since dimX ′ = 2, this morphism is dominant. Hence E|{x′}×X is non-locally
free for all x′ ∈ X ′. Since E|{x′}×X is locally free if x′ belongs to the exceptional locus, E|{x′}×X is locally
free for any x′ ∈ X ′. Then the claim follows from Lemma 3.6.12.

(2) The claim follows from Lemma 3.4.9 (3), (4) and the proof of Lemma 3.6.12. �

In the remaining of this subsection, we shall prove the following result.

Proposition 3.6.14. Ψ : D(X)→ D(X ′)op induces an equivalence A
µ

1 [−2]→ (A3)op.

We first note that the following two lemmas hold thanks to Theorem 3.6.1.

Lemma 3.6.15 (cf. Lem. 3.6.3). (1) Assume that F ∈ T3. Then Hom(F, E|X′×{x}) = 0 for a general

x ∈ X. In particular, Ψ̂0(F ) = 0.

(2) Assume that F ∈ F3. Then Hom(E|X′×{x}, F ) = 0 for all x ∈ X. In particular, Ψ̂2(F ) = 0.

Lemma 3.6.16 (cf. Lem. 3.6.6, Lem. 3.6.8). Let F be an object of Per(X ′/Y ′)D.

(1) If WIT0 holds for F with respect to Ψ̂, then F ∈ F
µ

3 (⊂ F3).

(2) If WIT2 holds for F with respect to Ψ̂, then F ∈ T3. If Ψ̂2(F ) does not contain a 0-dimensional
subobject, then F ∈ T3.

Lemma 3.6.17. (1) Assume that E ∈ T
µ

1 . Then
(a) Ψ0(E) = 0.
(b) Ψ1(E) ∈ F3.
(c) Ψ2(E) ∈ T3. Moreover if E does not contain a non-trivial 0-dimensional subobject, then

Ψ2(E) ∈ T3.

(2) Assume that E ∈ F
µ

1 . Then
(a) Ψ0(E) ∈ F3.
(b) Ψ1(E) ∈ T3.
(c) Ψ2(E) = 0.

Proof. We take a decomposition

(3.70) 0→ F1 → Ψ1(E)→ F2 → 0

with F1 ∈ T3 and F2 ∈ F3. Applying Ψ̂, we have an exact sequence

(3.71)

0 −−−−→ Ψ̂0(F2) −−−−→ Ψ̂0(Ψ1(E)) −−−−→ Ψ̂0(F1)

−−−−→ Ψ̂1(F2) −−−−→ Ψ̂1(Ψ1(E)) −−−−→ Ψ̂1(F1)

−−−−→ Ψ̂2(F2) −−−−→ Ψ̂2(Ψ1(E)) −−−−→ Ψ̂2(F1) −−−−→ 0.

By Lemma 3.6.15, we have Ψ̂0(F1) = Ψ̂2(F2) = 0.
(1) Assume that degmin,G1

(E) ≥ 0. By Lemma 3.6.16 (2) and Lemma 3.6.9, (a) and the first claim of (c)

hold. For the second claim of (c), by Lemma 3.6.16 (2), it is sufficient to prove that Ψ̂2(Ψ2(E)) does not
contain a non-trivial 0-dimensional subobject. By the exact sequence

(3.72) 0→ Ψ̂0(Ψ1(E))→ Ψ̂2(Ψ2(E))→ E

and the torsion-freeness of Ψ̂0(Ψ1(E)), we get our claim.

We prove (b). By Lemma 6.3.2 and (a), we have Ψ̂2(Ψ1(E)) = 0. Then WIT1 holds for F1. We have a
surjective homomorphism

(3.73) E → Ψ̂1(Ψ1(E)).

Hence E has a quotient sheaf Ψ̂1(F1) with degG1
(Ψ̂1(F1)) = − degG3

(F1) ≤ 0. If degG1
(Ψ̂1(F1)) < 0, then

we see that rk Ψ̂1(F1) > 0 and E 6∈ T
µ

1 . Hence degG1
(Ψ̂1(F1)) = − degG3

(F1) = 0. Then F1 ∈ T3 implies

that rk Ψ̂1(F1) = −χ(G3, F1) ≤ 0. Since χ(G1, Ψ̂
1(F1)) = − rkF1 ≤ 0, the G1-twisted Hilbert polynomial of

Ψ̂1(F1) is 0. Therefore F1 = 0.
(2) Assume that degmax,G1

(E) < 0. By Lemma 3.6.4 and Lemma 3.6.16, (a) and (c) hold. We prove

(b). Since Ψ2(E) = 0, Lemma 6.3.2 implies that Ψ̂0Ψ1(E) = 0. Hence WIT1 holds for F2 and we have
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an injective morphism Ψ̂1(F2) → Ψ̂1(Ψ1(E)) → E. Since degG1
(Ψ̂1(F2)) ≥ 0, we have Ψ̂1(F2) = 0, which

implies that F2 = 0. �

Proof of Proposition 3.6.14.
For E ∈ A

µ

1 , we have an exact sequence in A
µ

1

(3.74) 0→ H−1(E)[1]→ E → H0(E)→ 0.

Then we have an exact triangle

(3.75) Ψ(H0(E))[2]→ Ψ(E[−2])→ Ψ(H−1(E))[1]→ Ψ(H0(E))[3].

Hence Ψi(E[−2]) = 0 for i 6= −1, 0 and we have an exact sequence

(3.76)
0 −−−−→ Ψ1(H0(E)) −−−−→ Ψ−1(E[−2]) −−−−→ Ψ0(H−1(E))

−−−−→ Ψ2(H0(E)) −−−−→ Ψ0(E[−2]) −−−−→ Ψ1(H−1(E)) −−−−→ 0.

By Lemme 3.6.17, Ψ−1(E[−2]) ∈ F3 and Ψ0(E[−2]) ∈ T3. Therefore Ψ(E[−2]) ∈ (A3)op. �

Definition 3.6.18. (1) Let Per(X ′/Y ′)Dw∨
0
be the full subcategory of Per(X ′/Y ′)D consisting of G3-

twisted semi-stable objects E with degG3
(E) = χ(G3, E) = 0.

(2) Let C0 (resp. Per(X ′/Y ′)D0 ) be the full subcategory of C (resp. Per(X ′/Y ′)D) consisting of 0-
dimensional objects.

Proposition 3.6.19. Ψ induces the following correspondences:

C0 ∼=(Per(X ′/Y ′)Dw∨
0
)op,

Cv0 ∼=(Per(X ′/Y ′)D0 )op.
(3.77)

Proof. By Lemma 3.6.11, Ψ2(C0) is contained in (Per(X ′/Y ′)Dw∨
0
)op. It is easy to see that Per(X ′/Y ′)Dw∨

0
is

generated by Ψ2(Aij), i, j ≥ 0 and Ψ2(Cx), x ∈ X \ ∪iZi. Thus the first claim holds.
We have an equivalence

(3.78)
Per(X ′/Y ′)0 → (Per(X ′/Y ′)D0 )op

E 7→ RHomOX
(E,OX)[2].

Then the second claim is a consequence of Proposition 3.2.13 (1). �

3.7. Preservation of Gieseker stability conditions.

Proposition 3.7.1. Let E be a G1-twisted semi-stable object with degG1
(E) = 0 and χ(G1, E) < 0. Then

WIT1 holds for E and Ψ1(E) is G3-twisted semi-stable. In particular, we have an isomorphism

(3.79) MG1

H (v)ss →MG3

Ĥ
(−Ψ(v))ss

which preserves the S-equivalence classes, where v = lv0 + a̺X + (D + (D/r0, ξ0)̺X), l > 0, a < 0.

Proof. We note that E ∈ F1 ∩ T
µ

1 . By Lemma 3.6.4 and Lemma 3.6.17, WIT1 holds for E and Ψ1(E) ∈ F3.
Assume that Ψ1(E) is not G3-twisted stable. Then there is an exact sequence in Per(X ′/Y ′)D

(3.80) 0→ F1 → Ψ1(E)→ F2 → 0

such that F1 is a G3-twisted stable object with degG3
(F1) = 0 and

(3.81) 0 >
χ(G3, F1)

rkF1
≥ χ(G3,Ψ

1(E))

rkΨ1(E)
,

and F2 ∈ F3. Then we have an exact sequence

(3.82) 0→ Ψ̂1(F2)→ E → Ψ̂1(F1)→ 0.

Since

χ(G1, Ψ̂
1(F1))

rk(Ψ̂1(F1))
=

rkF1

χ(G3, F1)

≤ rkΨ1(E)

χ(G3,Ψ1(E))
=
χ(G1, E)

rkE
,

(3.83)

we have

(3.84)
χ(G3, F1)

rkF1
=
χ(G3,Ψ

1(E))

rkΨ1(E)
.
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Hence Ψ1(E) is G3-twisted semi-stable. Thus we have a morphismMG1

H (v)ss →MG3

Ĥ
(−Ψ(v))ss. It is easy

to see that this morphism preserves the S-equivalence classes. By the symmetry of the conditions, we have
the inverse morphism, which shows the second claim. �

The following is a generalization of [Y5, Thm. 1.7].

Proposition 3.7.2. Let w ∈ v(D(X ′)) be a Mukai vector such that 〈w2〉 ≥ −2 and

(3.85) w = lw0 + a̺X′ +

(
dĤ + D̂ +

1

r0
(dĤ + D̂, ξ0)̺X′

)
,

where l ≥ 0, a > 0 and D ∈ NS(X)⊗Q ∩H⊥. Assume that

d > max{(4l2r30 + 1/(H2)), 2r20l(〈w2〉 − (D2))}, if l > 0,

a > max{(2r0 + 1), (〈w2〉 − (D2))/2 + 1}, if l = 0.
(3.86)

Then

(1) MG1

H (Φ̂(w))ss ∼=MG2

Ĥ
(w)ss.

(2) MG1

H (Φ̂(w))ss consists of local projective generators.

(3) If (Ĥ,G2) is general with respect to w, thenMG1

H (Φ̂(w))ss ∼=MG1

H+ǫ(Φ̂(w))
ss for a sufficiently small

relatively ample divisor ǫ.

Proof. (1) We first note that FE in [Y5] corresponds to Φ̂. Since [Y5, Thm. 2.1, Thm. 2.2] are replaced by
Theorem 3.5.8, 3.6.1 and since [Y5, Prop. 2.8, Prop. 2.11] also hold for our case, the same proof of [Y5,

Thm. 1.7] works for our case. More precisely, in order to show that Φ(F ), F ∈MG1

H (Φ̂(w)) does not contain
a 0-dimensional subobject, we use the fact that WIT0 holds for 0-dimensional object E ∈ Per(X ′/Y ′) (see
Proposition 3.2.13 (1)).

(2) The proof is the same as in the proof of [Y5, Rem. 2.3]. Let E be a µ-semi-stable object of C such

that v(E) = Φ̂(w). If Ext1(S,E) 6= 0 for an irreducible object S of C, then a non-trivial extension

(3.87) 0→ E → E′ → S → 0

gives a µ-semi-stable object E′ with χ(G1, E
′) > χ(G1, E). By Proposition [Y5, Prop. 2.8, Prop. 2.11],

we get a contradiction. Hence Ext1(E, S) ∼= Ext1(S,E)∨ = 0 for any irreducible object S of C. Since
Ext2(E, S) ∼= Hom(S,E)∨ = 0, it is sufficient to prove that χ(S,E) > 0. We note that χ(S,E) =

χ(S, Φ̂(w)) = aχ(S,G1)+(c1(S), D). Since (H, c1(S)) = 0, we have |(c1(S), D)2| ≤ |(c1(S)2)(D2)| = −2(D2).

Since χ(S,G1) > 0, it is sufficient to prove that a >
√
−2(D2).

We first assume that l > 0. Then d(H2)−1 > 4l2r30(H
2) and d > 2r20l(〈w2〉−(D2)) = 2r20l(d

2(H2)−2lar0).
Hence

(3.88) a >
d(d(H2)− 1/(2r20l))

2r0l
>

d

2lr0
4l2r30(H

2) = 2dlr20(H
2).

Hence a > 2(4l2r30)lr
2
0(H

2) = 8r0(lr0)
3r0(H

2) ≥ 8. If −(D2) ≤ 4, then a > 3 >
√
−2(D2). If −(D2) > 4,

then 〈w2〉 − (D2) ≥ −2− (D2) > −(D2)/2. Hence

(3.89) a > 2dlr20(H
2) > r0(〈w2〉 − (D2))4(lr0)

2r0(H
2) >

√
−2(D2).

We next assume that l = 0. Then a > 2r0 + 1 and a > 〈w2〉/2 + 1 − (D2)/2 ≥ −(D2)/2. If −(D2) ≥ 8,

then a > −(D2)/2 ≥
√
−2(D2). If −(D2) < 8, then since a ≥ 2r0 + 1 + 1/r0,

√
−2(D2) < 4 ≤ a.

Therefore χ(E, S) > 0 and E is a local projective generator of C.
(3) By our assumption,MG1

H (Φ̂(w))ss =MG1

H (Φ̂(w))µ-ss ([Y5, Cor. 2.14]) and H is a general polarization.

Hence for E ∈ MG1

H (Φ̂(w))ss and a subobject E1 of E, (c1(E),H)
rkE = (c1(E1),H)

rkE1
implies c1(E)

rkE = c1(E1)
rkE1

. Let E

be a µ-semi-stable sheaf of v(E) = Φ̂(w) with respect to H . We shall prove that E ∈ C. We set

Σ := {Aij [−1]|i, j} ∩ Coh(X)

as in Proposition 1.1.19. We assume that Hom(E,F ) 6= 0 for F ∈ Σ. Then there is a µ-semi-stable sheaf
E′ ∈ C ∩ Coh(X) with respect to H fitting in an exact sequence

(3.90) 0→ E′ → E → F ′ → 0,

where F ′ ∈ C[−1] ∩ Coh(X). Then we see that χ(G1, E
′) > χ(G,E), which is a contradiction. Therefore

E ∈ C. Then we can easily see that E is µ-semi-stable in C. �

Corollary 3.7.3. If (G,H) is general with respect to v, then MG
H (v) is isomorphic to the moduli space of

usual stable sheaves on a K3 surface.
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Proof. We first construct a primitive and isotropic Mukai vector u such that rku > 0 and (rkG)c1(u) −
(rku)c1(G

∨) ∈ ZH : We first take a primitive isotropic Mukai vector t such that t = lv(G∨) + a̺X . Then

for a sufficiently small τ , T := MG∨+τ
H (t) is a K3 surface. Let F be the universal family on T × X as

a twisted object. Then we have an equivalence ΦF∨

X→T : D(X) → Dβ(T ). We consider Π := Φ
F(nD)
T→X ◦

ΦF∨

X→T : D(X) → D(X), n ≫ 0, where we set D := Ĥ. Then Π also induces a Hodge isometry Π :
H∗(X,Z) → H∗(X,Z). By its construction, Π preserves the subspace (Qt + QH + Q̺X) ∩ H∗(X,Z) and
rkΠ(̺X) > 0 for n ≫ 0. Hence u := Π(̺X) satisfies the claim. Since c1(u)/ rku − c1(G∨)/ rkG∨ ∈ QH ,
χ(u,A∨

ij [2])/ rku = χ(G∨, A∨
ij [2])/ rkG. By Corollary 2.4.4, there is a local projective generator Gu of CD

with v(Gu) = 2u. Since 〈Π(OX), u〉 = −1, X1 := Mu+α
H (u) is a fine moduli space of stable objects of

CD. Since C satisfies Assumption 3.1.1, CD also satisfies Assumption 3.1.1. Let E be the universal family
on X × X1. By Theorem 3.6.1, we can regard E as a universal family of v0 + γ-twisted stable objects of

Per(X1/Y1)
D with respect to H1, where Y1 := M

u

H(u), H1 := Ĥ , v0 = v(E|{x}×X1
) and γ is determined

by α. Then (Mv0+γ
H1

(v0), Ĥ1) = (X,H). For Φ̂ = ΦE
X→X1

and Mu∨

H (vemH)ss, m ≫ 0, we shall apply

Proposition 3.7.2. ThenMu∨

H (v)ss is isomorphic to a moduli stack of usual semi-stable sheaves on X1. Since

Mu∨

H (v)ss =MG
H(v)

ss, we get our claim. �

Since (3.86) is numerical, we can apply Proposition 3.7.2 to a family of K3 surfaces.

Example 3.7.4. Let f : (X ,H) → S be a family of polarized K3 surfaces over S. Let v0 := (r, dH, a),
gcd(r, a) = 1 be a family of isotropic Mukai vectors. We set X ′ := Mv0

X/S(v0). Then we have a family of

polarizations H′ on X ′. Since gcd(r, a) = 1, there is a universal family E on X ′×SX and we have a family of
Fourier-Mukai transforms ΦE

X→X ′ : D(X ) → D(X ′). Then we can apply Proposition 3.7.1 and Proposition
3.7.2 to families of moduli spaces over S.

We also give a generalization of [Y1, Thm. 7.6] based on Theorem 3.5.8 and Proposition 3.6.14. We set

(3.91) dmin := min{degG1
(F ) > 0|F ∈ D(X)}.

Proposition 3.7.5. Assume that T1 = T
µ
1 . Let v ∈ H∗(X,Z) be a Mukai vector of a complex such that

degG1
(v) = dmin.

(1) If rkΦ(v) ≤ 0, then Φ induces an isomorphism

(3.92) MG1

H (v)ss →MG2

Ĥ
(−Φ(v))ss

by sending E to Φ1(E).
(2) If rkΨ(v) ≥ 0, then Ψ induces an isomorphism

(3.93) MG1

H (v)ss →MG3

Ĥ
(Ψ(v))ss

by sending E to Ψ2(E).

The proof is an easy exercise. We shall give a proof in [MYY], as an application of Bridgeland’s stability
condition.

Remark 3.7.6. In [Y6], we constructed actions of Lie algebras on the cohomology groups of some moduli
spaces of stable sheaves. In particular, we constructed the action on the cohomology groups of some moduli
spaces of stable objects of −1 Per(X/Y ) in [Y6, Prop. 6.15]. Then a generalization of [Y6, Prop. 6.15] to
the objects in Per(X ′/Y ′) corresponds to the action in [Y6, Example 3.1.1] via Proposition 3.7.5.

4. Fourier-Mukai transforms on elliptic surfaces.

4.1. Moduli of stable sheaves of dimension 2. Let Y → C be a morphism from a normal projective
surface to a smooth curve C such that a general fiber is an elliptic curve. Let π : X → Y be the minimal
resolution. Then p : X → C is an elliptic surface over a curve C. We fix a divisor H on X which is
the pull-back of an ample divisor on Y . As in section 3, let C be the category in Lemma 1.1.5 satisfying
Assumption 3.1.1. We also use the notation Aij in section 3. Let G1 be a locally free sheaf on X which is a
local projective generator of C. Let e ∈ K(X)top be the topological invariant of a locally free sheaf E of rank
r and degree d on a fiber of p. Thus ch(e) = (0, rf, d), where f is a fiber of p. Assume that e is primitive.

Then M
G1

H (e) consists of G1-twisted stable objects, if G1 ∈ K(X)top ⊗Q, rkG1 > 0 is general with respect
to e and H . From now on, we assume that χ(G1, e) = 0. By [O-Y, sect. 1.1], we do not lose generality.

Remark 4.1.1. We have M
G1

H (e) =M
G1

H+nf (e) for all n.

Lemma 4.1.2. We set

(4.1) e⊥ := {E ∈ K(X)top|χ(E, e) = 0}.
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(1) −χ( , ) is symmetric on e⊥.
(2) M := (Zτ(G1) + Zτ(Cx) + Ze)⊥/Ze is a negative definite even lattice of rank ρ(X)− 2.

Proof. (1) For a divisor D, we set

(4.2) ν(D) := τ(OX(D)−OX)− χ(G1,OX(D)−OX)

rkG1
τ(Cx) ∈ K(X)top ⊗Q.

Then ν induces a homomorphism

(4.3) NS(X)⊗Q→ K(X)top ⊗Q

such that rk(ν(D)) = 0, c1(ν(D)) = D and χ(G1, ν(D)) = 0. For E ∈ K(X)⊗Q, we have an expression

(4.4) τ(E) = lτ(G1) + aτ(Cx) + ν(D)

where l, a ∈ Q and D ∈ NS(X) ⊗ Q. If χ(E, e) = 0, then D satisfies (D, f) = 0. Hence we have a
decomposition

(4.5) e⊥ ⊗Q = (Qτ(G1) +Qτ(Cx)) + ν((Qf)⊥).

For E,F ∈ K(X), we have

(4.6) χ(E,F )− χ(F,E) = (rkEc1(F )− rkFc1(E),KX).

Hence the claim (1) holds.
(2) By (4.5), the signature of e⊥/Ze is (1, ρ(X)− 1). We note that Qτ(G1) +Qτ(Cx)→ (e⊥/Ze)⊗Q is

injective and defines a subspace of signature (1, 1). Hence M is negative definite. Since (Zτ(Cx) + Ze)⊥ is
an even lattice, we get our claim. �

Lemma 4.1.3. (1) Assume that G1 is general with respect to e and H. Then M
G1

H (e) is a smooth

elliptic surface over C and E ⊗KX
∼= E for all E ∈MG1

H (e).
(2) Let E be a G1-twisted stable object such that Supp(E) ⊂ p−1(c), c ∈ C. If χ(G1, E) = 0 and

(c1(E), H) < (c1(e), H), then χ(E,E) = 2 and E ⊗KX
∼= E.

Proof. (1) In [Br1, Thm. 1.2], Bridgeland proved that M
G1

H (e) is smooth and defines a Fourier-Mukai

transform D(M
G1

H (e)) → D(X), if G1 = OX is general with respect to e and H . We can easily generalize

the arguments in [Br1, sect. 4] to the moduli spaceM
G1

H (e) of G1-twisted semi-stable objects, if G1 is general
with respect to e and H . Then the claims follow.

(2) Since Supp(E) ⊂ p−1(c) and χ(G1, E) = 0, we have E ∈ (Zτ(Cx)+Zτ(G1)+Ze)⊥. Since (c1(E), H) <
(c1(e), H), we get

(4.7) 2 ≤ χ(E,E) = dimHom(E,E) + dimHom(E,E ⊗KX)− dimExt1(E,E).

Hence Hom(E,E⊗KX) 6= 0. Since K⊗m
X ∈ p∗(Pic(C)) for an integer m, we see that E⊗KX is a G1-twisted

stable object with τ(E) = τ(E ⊗KX), which implies that E ⊗KX
∼= E and χ(E,E) = 2. �

In the same way as in the proof of Theorem 3.1.5, we get the following results.

Corollary 4.1.4. (1) M
G1

H (e) is a normal surface and the singular points q1, q2, . . . , qm of M
G1

H (e)
correspond to the S-equivalence classes of properly G1-twisted semi-stable objects.

(2) Let ⊕s
′

i

j=0E
⊕a′ij
ij be the S-equivalence class corresponding to qi. Then the matrix (χ(Eij , Eik))j,k≥0

is of affine type Ã, D̃, Ẽ. We assume that ai0 = 1 for all i. Then q1, q2, . . . , qm are rational double
points of type A,D,E according as the type of the matrices (χ(Eij , Eik))j,k≥1.

(3) We take a sufficiently small general α ∈ K(X)⊗Q such that χ(α, e) = 0. Then π′ : M
G1+α

H (e)→
M

G1

H (e) is the minimal resolution.
(4) Assume that a′i0 = 1 for all i and χ(α,Eij) < 0 for all j > 0. We set

(4.8) C′
ij := {E ∈MG1+α

H (e)|Hom(Eij , E) 6= 0}.

Then C′
ij is a smooth rational curve such that (C′

ij , C
′
i′j′) = −χ(Eij , Ei′j′ ) and π′−1(qi) =

∑
j≥1 a

′
ijC

′
ij .

Remark 4.1.5. In Theorem 3.1.5, we assume that χ(α,Eij) > 0. So the definition of C′
ij is different from

that in Lemma 3.2.4. For the smoothness of C′
ij , we use the moduli of coherent systems (E, V ), where

E ∈MG1+α
H (e) and V is a 1-dimensional subspace of Hom(Eij , E).

From now on, we take an α in Corollary 4.1.4 (3) and setX ′ :=M
G1+α

H (e), Y ′ :=M
G1

H (e). Let q : X ′ → C
be the structure morphism of the elliptic fibration.
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4.2. Fourier-Mukai duality for an elliptic surface. Let E be a universal family as a twisted sheaf on
X ′ ×X . For simplicity, we assume that it is an untwisted sheaf. We set

Ψ(E) :=RHompX′
(p∗X(E), E) = Φ(E)∨[−2], E ∈ D(X),

Ψ̂(F ) :=RHompX (p∗X′(F ), E), F ∈ D(X ′).
(4.9)

Lemma 4.2.1. Replacing G1 by G1 −nCx, n≫ 0, we can choose detΨ(G1)
∨ ∈ Pic(X ′) as the pull-back of

an ample line bundle on W . Let Ĥ be a divisor with OX′(Ĥ) = detΨ(G1)
∨.

Proof. We note that detΨ(Cx) = rf . Hence detΨ(G1 − nCx)∨ = detΨ(G1)
∨(nrf). We set

(4.10) ξ := mr rkG1(H, f)(−G∨
1 + (rkG1)n(n+m)(H2)/2̺X).

By (1.104), det pX′!(E ⊗ p∗X(ξ)) is the pull-back of a polarization of Y ′ for m ≫ n ≫ 0. Since detΨ(ξ∨) =
det pX′!(E ⊗ p∗X(ξ)) and − ch(ξ∨) ≡ mr rkG1(H, f) ch(G1) mod Q̺X , we get our claim. �

Lemma 4.2.2. We set A′
ij := Ψ(Eij)[2].

(1) There are b′
i := (b′i1, b

′
i2, . . . , b

′
is′

i
), i = 1, . . . ,m such that

A′
ij = OC′

ij
(b′ij)[1], j > 0

A′
i0 = A0(b

′
i).

(4.11)

(2) Irreducible objects of Per(X ′/Y ′,b′
1, ...,b

′
m) are

(4.12) A′
ij(1 ≤ i ≤ m, 0 ≤ j ≤ s′i), Cx′(x′ ∈ X ′ \ ∪iZ ′

i).

Proof. It is sufficient to prove (1) by Proposition 1.2.19. By the choice of α, we have

Ext2(Eij , E|{x′}×X) =0, j > 0,

Hom(Ei0, E|{x′}×X) =0
(4.13)

for all x′ ∈ X ′. Then the claim for j > 0 follow from the proof of Corollary 4.1.4 (4). For x′ ∈ π′−1
(qi), we

have an exact sequence

(4.14) 0→ Fi → E|{x′}×X → Ei0 → 0,

where Fi is a G1-twisted semi-stable object which is S-equivalent to ⊕j>0E
⊕ja

′

ij

ij . Applying Ψ, we have an
exact sequence

(4.15) 0→ Ψ(Fi)[1]→ A′
i0 → Cx′ → 0.

It is easy to see that

(4.16) Hom(A′
i0, A

′
ij [−1]) = Ext1(A′

i0, A
′
ij [−1]) = 0.

By Lemma 2.1.8, we get A′
i0 = A0(b

′
i). �

We define Per(X ′/Y ′) and Per(X ′/Y ′)D as in subsection 3.2. Replacing G1 by G′
1 with τ(G′

1) = τ(G1)−
nτ(Cx), we may assume that G1|p−1(t), t ∈ C is a stable vector bundle for a general t ∈ C. Then L′

2 =

Ψ(G1)[1] is a torsion object of Per(X ′/Y ′)∩Coh(X ′) such that c1(L2) = Ĥ . Indeed L′
2 is a coherent torsion

sheaf on X ′. Since Hom(L′
2, A

′
ij [−1]) = Hom(Eij , G1) = 0, L′

2 ∈ Per(X ′/Y ′).

Lemma 4.2.3. Let L1 be a line bundle on a smooth curve C ∈ |H | and set G2 := Ψ(L1)[1]. Then we have

Hom(G2,Cx′ [k]) = 0, k 6= 0,

Hom(G2, A
′
ij [k]) = 0, k 6= 0,

dimHom(G2, A
′
ij) = (c1(Eij), H).

(4.17)

In particular G2 is a local projective generator of Per(X ′/Y ′).

Proof. The claim follows from the following relations:

Hom(G2,Cx′ [k]) = Hom(Ψ(L1)[1],Ψ(E|{x′}×X)[2 + k])

= Hom(E|{x′}×X , L1[k + 1]),

Hom(G2, A
′
ij [k]) = Hom(Ψ(L1)[1],Ψ(Eij)[2 + k])

= Hom(Eij , L1[k + 1]).

(4.18)

�
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For a conveniense sake, we summalize the image of Cx[−2], E|{x′}×X , G1, L1 by Ψ:

Ψ(Cx[−2]) = E|X′×{x},

Ψ(E|{x′}×X) = Cx′ [−2],
Ψ(G1) = L2[−1],
Ψ(L1) = G2[−1].

(4.19)

Definition 4.2.4. We set Ψi(E) := pHi(Ψ(E)) ∈ Per(X ′/Y ′) and Ψ̂i(E) := pHi(Ψ̂(E)) ∈ Per(X/Y ).

Lemma 4.2.5. WIT2 with respect to Ψ holds for all 0-dimensional objects E of Per(X ′/Y ′) and Ψ2(E) is
G2-twisted semi-stable. Moreover if E is an irreducible object, then Ψ(E)[2] is a G2-twisted stable object of
Per(X ′/Y ′).

Proof. It is sufficient to prove the claim for all irreducible objects E of C. Since E|{x′}×X and Eij are purely

1-dimensional objects of C, Hom(E, E|{x′}×X) = Hom(E,Eij) = 0 for all x′ ∈ X ′ and i, j. Hence Ψ1(E) is a

torsion free object of C2. Since Hom(E, E|{x′}×X [1]) = 0 if Supp(E) ∩ p−1(p(x′)) = ∅, Ψ1(E) = 0. Therefore
WIT2 holds for all 0-dimensional objects of Per(X ′/Y ′).

For the G2-twisted stability of Ψ(E)[2], we first note that χ(G2,Ψ(E)[2]) = χ(Ψ(L1)[1],Ψ(E)[2]) =
χ(E,L1[1]) = 0. Assume that there is an exact sequence

(4.20) 0→ F1 → Ψ2(E)→ F2 → 0

such that 0 6= F1 ∈ Per(X ′/Y ′) and F2 ∈ Per(X ′/Y ′) with χ(G2, F2) ≤ 0. Applying Ψ̂ to this exact
sequence, we get a long exact sequence

(4.21)

0 −−−−→ Ψ̂0(F2) −−−−→ 0 −−−−→ Ψ̂0(F1)

−−−−→ Ψ̂1(F2) −−−−→ 0 −−−−→ Ψ̂1(F1)

−−−−→ Ψ̂2(F2) −−−−→ E −−−−→ Ψ̂2(F1) −−−−→ 0.

Since Ψ̂0(F1) = 0, WIT2 holds for F2. Since 0 ≥ χ(G2, F2) = χ(Ψ̂(F2), Ψ̂(G2)) = χ(Ψ̂(F2), L1[−1]) =

(H, c1(Ψ̂
2(F2))) ≥ 0, we get χ(G2, F2) = 0 and Ψ̂2(F2) is a 0-dimensional object. Then Ψ̂1(F1) is also 0-

dimensional. Since E is an irreducible object of C1, we have (i) Ψ̂
2(F1) = 0 or (ii) Ψ̂2(F1) ∼= E. Since WIT2

holds for Ψ̂1(F1) with respect to Ψ, the first case does not hold. If Ψ̂2(F1) ∼= E, then Ψ̂1(F1) ∼= Ψ̂2(F2).

Since Ψ̂0(F1) = 0, Lemma 6.3.2 implies that Ψ2(Ψ̂1(F1)) = 0, which implies that F2 = Ψ2(Ψ̂2(F2)) = 0.
Therefore Ψ2(E) is G2-twisted stable. �

Theorem 4.2.6. We set f := τ(E|X′×{x}). Then E|X′×{x} is G2−Ψ(β)-twisted stable for all x ∈ X and we

have an isomorphism X →M
G2−Ψ(β)

Ĥ
(f) by sending x ∈ X to E|X′×{x} ∈MG2−Ψ(β)

Ĥ
(f).

Proof. By Lemma 4.2.5, E|X′×{x} is G2-twisted semi-stable. If E|X′×{x} is not G2-twisted stable, then

E|X′×{x} is S-equivalent to ⊕jΨ2(Aij)
⊕aij . Let F1 6= 0 be a G2-twisted stable subobject of E|X′×{x} such

that χ(G2, F1) = 0. Then F1 is S-equivalent to ⊕jΨ2(Aij)
⊕bij and Ψ̂(F1)[2] is a quotient object of Cx. Since

Cx is β-stable, 0 < χ(β, Ψ̂(F1)) = χ(Ψ(β), F1). Therefore E|X′×{x} is G2 − Ψ(β)-twisted stable. Then we

have an injective morphism φ : X →M
G2−Ψ(β)

Ĥ
(f) by sending x ∈ X to E|X′×{x}. By a standard argument,

we see that φ is an isomorphism. �

4.3. Tiltings of C, Per(X ′/Y ′) and their equivalence. We set C1 := C and C2 := Per(X ′/Y ′). In

this subsection, we define tiltings A1, Â2 of C1, C2 and show that Ψ induces a (contravariant) equivalence
between them. We first define the relative twisted degree of E ∈ Ci by degGi

(E) := (c1(G
∨
i ⊗ E), f), and

define µmax,Gi
(E), µmin,Gi

(E) in a similar way.

Definition 4.3.1. (1) Let Ti be the full subcategory of Ci consisting of objects E such that (i) E is a
torsion object or (ii) E is torsion free and µmin,Gi

(E) ≥ 0.

(2) Let Fi be the full subcategory of Ci consisting of objects E such that (i) E = 0 or (ii) E is torsion
free and µmax,Gi

(E) < 0.

Definition 4.3.2. (1) Let T̂i be the full subcategory of Ci consisting of objects E such that Supp(E)
is contained in fibers and there is no quotient object E → E′ with χ(Gi, E

′) < 0.
(2) We set

F̂i :=(T̂i)
⊥

={E ∈ Ci|Hom(E′, E) = 0, E′ ∈ T̂i}.
(4.22)
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Remark 4.3.3. We have F̂i ⊃ Fi and T̂i ⊂ Ti.

Definition 4.3.4. (Ti,Fi) and (T̂i, F̂i) are torsion pairs of Ci. We denote the tiltings by Ai and Âi respec-
tively.

Then we have the following equivalence:

Proposition 4.3.5. Ψ induces an equivalence A1[−2]→ (Â2)op.

For the proof of this proposition, we need the following properties.

Lemma 4.3.6. (1) Assume that E ∈ T1. Then Hom(E, E|{x′}×X) = 0 for a general x′ ∈ X ′.

(2) Assume that E ∈ F̂1. Then Hom(E|{x′}×X , E) = Hom(Eij , E) = 0 for all x′ ∈ X ′. In particular if

E ∈ F1, then Hom(E|{x′}×X , E) = Hom(Eij , E) = 0 for all x′ ∈ X ′.

Proof. We only prove (1). If rkE = 0, then obviously the claim holds. Let E be a torsion free object on
X such that E|f is a semi-stable locally free sheaf with χ(G1, E|f ) = 0 for a general f . Then if there is a
non-zero homomorphism ϕ : E → E|{x′}×X , then ϕ is surjective and E|f is S-equivalent to E|{x′}×X ⊕ kerϕ,

where f = p−1(q(x′)). Therefore Hom(E, E|{x′}×X) = 0 for a general x′ ∈ q−1(p(f)) ⊂ Y . �

Lemma 4.3.7. Let E be an object of C = C1.

(1) pHi(Ψ(E)) = 0 for i ≥ 3.
(2) H0(pH2(Ψ(E))) = H2(Ψ(E)).
(3) pH0(Ψ(E)) ⊂ H0(Ψ(E)). In particular, pH0(Ψ(E)) is torsion free.
(4) If Hom(E,Eij [2]) = 0 for all i, j and Hom(E, E|{x′}×X [2]) = 0 for all x′ ∈ X ′, then pH2(Ψ(E)) = 0.

In particular, if E ∈ F̂1, then
pH2(Ψ(E)) = 0.

(5) If E satisfies E ∈ T1, then
pH0(Ψ(E)) = 0.

Proof. By Lemma 4.2.2, E ∈ Per(X ′/Y ′) is 0 if and only if Hom(E,A′
ij) = Hom(E,Cx′) = 0 for all i, j and

x′ ∈ X ′. Since

Hom(E,Eij [p]) ∼= Hom(Ψ(E)[p],Ψ(Eij)(KX′)[2])∨ ∼= Hom(Ψ(E)[p],Ψ(Eij)[2])
∨,

Hom(E, E|{x′}×X [p]) ∼= Hom(Ψ(E)[p],Ψ(E|{x′}×X)(KX′)[2])∨ ∼= Hom(Ψ(E)[p],Ψ(E|{x′}×X)[2])∨,
(4.23)

we have (1), (2) and (4). (3) is obvious. (5) follows from (3) and Lemma 4.3.6 (1). �

Corollary 4.3.8. If E ∈ T1 ∩ F̂1, then
pHi(Ψ(E)) = 0 for i 6= 1.

Lemma 4.3.9. Let E be an object of C.
(1) If WIT0 holds for E with respect to Ψ, then E ∈ F1.

(2) If WIT2 holds for E with respect to Ψ, then E ∈ T̂1.

Proof. For an object E of C, there is an exact sequence

(4.24) 0→ E1 → E → E2 → 0

such that E1 ∈ T1 and E2 ∈ F1. Applying Ψ to this exact sequence, we get a long exact sequence

(4.25)

0 −−−−→ Ψ0(E2) −−−−→ Ψ0(E) −−−−→ Ψ0(E1)

−−−−→ Ψ1(E2) −−−−→ Ψ1(E) −−−−→ Ψ1(E1)

−−−−→ Ψ2(E2) −−−−→ Ψ2(E) −−−−→ Ψ2(E1) −−−−→ 0.

By Lemma 4.3.7, we have Ψ0(E1) = Ψ2(E2) = 0. If WIT0 holds for E, then we get Ψ(E1) = 0. Hence (1)
holds. If WIT2 holds for E, then we get Ψ(E2) = 0. Thus E ∈ T1. We take a decomposition

(4.26) 0→ E′
1 → E → E′

2 → 0

such that E′
1 ∈ T̂1 and E′

2 ∈ F̂1 ∩ T1. Then Ψi(E′
2) = 0 for i 6= 1 by Corollary 4.3.8. Since Ψ0(E′

1) = 0, we
also get Ψ1(E′

2) = 0. Therefore E′
2 = 0. �

Lemma 4.3.10. (1) If E ∈ T1, then (1a) Ψ0(E) = 0, (1b) Ψ1(E) ∈ F̂2 and (1c) Ψ2(E) ∈ T̂2.

(2) If E ∈ F1, then (2a) Ψ0(E) ∈ F̂2, (2b) Ψ1(E) ∈ T̂2 and (2c) Ψ2(E) = 0.

Proof. (1a) and (2c) follow from Lemma 4.3.7. (2a) is easy. (1c) By Lemma 6.3.2, WIT2 holds for Ψ2(E)

with respect to Ψ̂. By a similar claim of Lemma 4.3.9 (2), we get Ψ2(E) ∈ T̂2.
We next study Ψ1(E) for E ∈ C. Assume that there is an exact sequence

(4.27) 0→ F1 → Ψ1(E)→ F2 → 0
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such that F1 ∈ T̂2 and F2 ∈ F̂2. Applying Ψ̂, we have a long exact sequence

(4.28)

0 −−−−→ Ψ̂0(F2) −−−−→ Ψ̂0(Ψ1(E)) −−−−→ Ψ̂0(F1)

−−−−→ Ψ̂1(F2) −−−−→ Ψ̂1(Ψ1(E)) −−−−→ Ψ̂1(F1)

−−−−→ Ψ̂2(F2) −−−−→ Ψ̂2(Ψ1(E)) −−−−→ Ψ̂2(F1) −−−−→ 0.

By Theorem 4.2.6, we have similar claims to Lemma 4.3.7. Thus we have Ψ̂0(F1) = Ψ̂2(F2) = 0.

Assume that E ∈ T1. Since Ψ0(E) = 0, Lemma 6.3.2 implies that Ψ̂2(Ψ1(E)) = 0. Hence WIT1 holds

for F1. Since 0 ≤ χ(G2, F1) = χ(Ψ̂1(F1), L1) = −(H, c1(Ψ̂1(F1))) ≤ 0, Ψ̂1(F1) is a 0-dimensional object. If

F1 6= 0, then since Ψ̂1(F1) 6= 0, we see that 0 < χ(G1, Ψ̂
1(F1)) = χ(F1, L2) = −(Ĥ, c1(F1)) ≤ 0, which is a

contradiction. Therefore F1 = 0.
Assume that E ∈ F1. Since Ψ2(E) = 0, Lemma 6.3.2 implies that Ψ̂0(Ψ1(E)) = 0. Hence WIT1 holds

for F2. We have an injection Ψ̂1(Ψ1(E)) → E. Since µmax,G1(E) < 0, Ψ1(E) is zero on a generic fiber of

p. Hence Ψ̂1(Ψ1(E)) is a torsion object. Since E is torsion free, Ψ̂1(Ψ1(E)) = 0. Since Ψ̂0(F1) = 0, we get

Ψ̂1(F2) = 0, which implies that F2 = 0. �

Proof of Proposition 4.3.5.

It is sufficient to prove that Ψ(T1[−2]),Ψ(F1[−1]) ⊂ (Â2)op. Then the claims follow from Lemma 4.3.10.
�

4.4. Preservation of Gieseker stability conditions. We give a generalization of [Y1, Thm. 3.15]. We
first recall the following well-known fact.

Lemma 4.4.1. (1) Let E be a torsion free object of C. Then E is G1-twisted semi-stable with respect
to H + nf , n ≫ 0 if and only if for every proper object E′ of E, one of the following conditions
holds:
(a)

(4.29)
(c1(E), f)

rkE
>

(c1(E
′), f)

rkE′
,

(b)

(4.30)
(c1(E), f)

rkE
=

(c1(E
′), f)

rkE′
,
(c1(E), H)

rkE
>

(c1(E
′), H)

rkE′
,

(c)

(4.31)
(c1(E), f)

rkE
=

(c1(E
′), f)

rkE′
,
(c1(E), H)

rkE
=

(c1(E
′), H)

rkE′
,
χ(G1, E)

rkE
≥ χ(G1, E

′)

rkE′
.

(2) Let F be a 1-dimensional object of Per(X ′/Y ′) with (c1(F ), f) 6= 0. Then F is G2-twisted semi-

stable with respect to Ĥ + nf , n ≫ 0 if and only if for every proper subobject F ′ of F , one of the
following conditions holds:
(a)

(4.32) (c1(F
′), f)

χ(G2, F )

(c1(F ), f)
> χ(G2, F

′)

(b)

(4.33) (c1(F
′), f)

χ(G2, F )

(c1(F ), f)
= χ(G2, F

′), (c1(F
′), Ĥ)

χ(G2, F )

(c1(F ), Ĥ)
> χ(G2, F

′).

Lemma 4.4.2. Let F be a purely 1-dimensional G2-twisted semi-stable object such that (c1(F ), f) > 0 and

χ(G2, F ) < 0. Then WIT1 holds for F with respect to Ψ̂ and Ψ̂1(F ) is torsion free.

Proof. By Lemma 4.4.1 (2), F ∈ F̂2. By Theorem 4.2.6, similar claims to Lemma 4.3.7, Corollary 4.3.8 and

Lemma 4.3.9 hold for Ψ̂. Hence WIT1 holds for F . Assume that there is an exact sequence

(4.34) 0→ E1 → Ψ̂1(F )→ E2 → 0

such that E1 is the torsion object of Ψ̂1(F ). Since Ψ̂1(F )|f is a semi-stable vector bundle of deg(G∨
1 ⊗

Ψ̂1(F )|f ) = 0 for a general fiber f of p, Supp(E1) is contained in fibers. Since E1 ∈ T1 and E2 ∈ F̂1, WIT1

holds for E1, E2 and we have a quotient F → Ψ1(E1). By our assumption on F , we get χ(G2,Ψ
1(E1)) ≥ 0.

On the other hand, χ(G2,Ψ
1(E1)) = χ(E1, L1) = −(H, c1(E1)) ≤ 0. Hence E1 is a 0-dimensional object.

Then we get 0 < χ(G1, E1) = χ(Ψ1(E1), L2) = −(Ĥ, c1(Ψ1(E1))) ≤ 0, which is a contradiction. �
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Lemma 4.4.3. Let F be a 1-dimensional object of Per(X ′/Y ′). Then

(c1(F ), f) = rk(Ψ̂(F )[1]),

(c1(F ), Ĥ) = −χ(F,L2) = −χ(G1, Ψ̂(F )[1]),

χ(G2, F ) = χ(Ψ̂(F )[1], L1) = −(c1(Ψ̂(F )[1]), H) + rk(Ψ̂(F )[1])χ(L1).

(4.35)

Proposition 4.4.4. Let w ∈ K(X ′)top be a topological invariant of a 1-dimensional object. Assume that
χ(G2, w) < 0. Then for n≫ 0, we have an isomorphism

(4.36) MG1

H+nf (Ψ̂(−w))ss →MG2

Ĥ+nf
(w)ss,

which preserves the S-equivalence classes.

Proof. Let E be a G1-twisted semi-stable object with τ(E) = Ψ̂(−w). Then since E|f is a semi-stable locally

free sheaf with d rkE − r deg(E|f ) = 0 for a general fiber, we have E ∈ T1 ∩ F̂1. By Corollary 4.3.8, WIT1

holds for E with respect to Ψ. Assume that there is an exact sequence

(4.37) 0→ F1 → Ψ1(E)→ F2 → 0.

By Lemma 4.3.10, Ψ1(E) ∈ F̂2, which implies that F1 ∈ F̂2. Since rkΨ1(E) = 0, F1, F2 ∈ T2. In particular,

F1 ∈ T2 ∩ F̂2. Then similar claim to Corollary 4.3.8 implies that WIT1 holds for F1. Hence we get an exact
sequence

(4.38) 0→ Ψ̂1(F2)→ E
ϕ→ Ψ̂1(F1)→ Ψ̂2(F2)→ 0.

By Lemma 4.3.10, Ψ̂2(F2) ∈ T̂1. Hence rk Ψ̂1(F1) = rk imϕ. By (4.35), we have the following equivalences.

(4.39) (c1(F1), f)
χ(G2,Ψ

1(E))

(c1(F ), f)
≤ χ(G2, F1)⇐⇒ rk Ψ̂1(F1)

(c1(E), H)

rkE
≥ (c1(Ψ̂

1(F1)), H),

(4.40) (c1(F1), Ĥ)
χ(G2,Ψ

1(E))

(c1(Ψ1(E)), Ĥ)
≤ χ(G2, F1)⇐⇒ −χ(G1, Ψ̂

1(F1))
χ(G2,Ψ

1(E))

−χ(G1, E)
≤ χ(G2, F1).

If the equality holds in (4.39), then χ(G2,Ψ
1(E)) < 0 implies that (4.40) is equivalent to

(4.41)
χ(G1, Ψ̂

1(F1))

χ(G1, E)
≥ rk Ψ̂1(F1)

rkE

which is equivalent to

(4.42)
χ(G1, Ψ̂

1(F1))

rk Ψ̂1(F1)
≤ χ(G1, E)

rkE

by −χ(G1, E) > 0. Since

(4.43)
χ(G1, imϕ(nH))

rk imϕ
≤ χ(G1, Ψ̂

1(F1)(nH))

rk Ψ̂1(F1)
, n≫ 0,

we see that ϕ is surjective and the equalities hold for (4.39), (4.40). Therefore Ψ1(E) is G2-twisted semi-
stable.

Conversely let F be a G2-twisted semi-stable object with τ(F ) = w. By Lemma 4.4.2, WIT1 holds for F

with respect to Ψ̂ and Ψ̂1(F ) is a torsion free object whose restriction to a general fiber is stable. If Ψ̂1(E)
is not G1-twisted semi-stable, then we have an exact sequence

(4.44) 0→ E1 → Ψ̂1(F )→ E2 → 0

such that Ei ∈ T1 ∩ F̂1. By using Lemme 4.4.3, we get the following equivalences:

(4.45)
(c1(Ψ̂

1(F )), H)

rk Ψ̂1(F )
≤ (c1(E1), H)

rkE1
⇐⇒ χ(G2, F )

(c1(F ), f)
≥ χ(G2,Ψ

1(E1))

(c1(Ψ1(E1)), f)
,

(4.46)
χ(G1, Ψ̂

1(F ))

rk Ψ̂1(F )
≤ χ(G1, E1)

rkE1
⇐⇒ (c1(F ), Ĥ)

(c1(F ), f)
≥ (c1(Ψ

1(E1)), Ĥ)

(c1(Ψ1(E1)), f)
.

If the equality holds in (4.45), then (4.46) is equivalent to

(4.47)
χ(G2, F )

(c1(F ), Ĥ)
≥ χ(G2,Ψ

1(E1))

(c1(Ψ1(E1)), Ĥ)

by χ(G2, F ) < 0. Therefore Ψ̂1(F ) is G1-twisted semi-stable. �
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5. A category of equivariant coherent sheaves.

5.1. Morita equivalence for G-sheaves. Let X be a smooth projective surface and G a finite group
acting on X . Assume that G → Aut(X) is injective and Stab(x), x ∈ X acts trivally on (KX)|{x}, that is,
KX is the pull-back of a line bundle on Y := X/G. By our assumption, all elements of G have at most
isolated fixed points sets. Let R(G) be the representation ring of G and ( , ) the natural inner product.
Let KG(X) be the Grothendieck group of G-sheaves and KG(X)top its image to the Grothendieck group of
topological G-vector bundles.

Definition 5.1.1. For G-sheaves E and F on X ,

(1) ExtiG(E,F ) is the G-invariant part of Ext
i(E,F ).

(2) χG(E,F ) :=
∑

i(−1)i dimExtiG(E,F ) is the Euler characteristic of the G-invariant cohomology
groups of E,F . We also set χG(E) := χG(OX , E).

Remark 5.1.2. If KX
∼= OX in CohG(X), then χG( , ) is symmetric.

Let ̟ : X → Y be the quotient map. We set

̟∗(OX)[G] :=





∑

g∈G

fg(x)g

∣∣∣∣∣∣
fg(x) ∈ ̟∗(OX)



 .(5.1)

̟∗(OX)[G] is an OY -algebra whose multiplication is defined by

(5.2) (
∑

g∈G

fg(x)g) · (
∑

g′∈G

f ′
g′(x)g

′) :=
∑

g,g′∈G

fg(x)f
′
g′(g

−1x)gg′.

We note that ǫ := 1
#G

∑
g∈G g satisfies gǫ = ǫ for all g ∈ G. By the injective homomorphism

(5.3) ̟∗(OX)→ ̟∗(OX)ǫ (⊂ ̟∗(OX)[G]),

we have an action of ̟∗(OX)[G] on ̟∗(OX):

(5.4) (
∑

g∈G

fg(x)g) · f(x) :=
∑

g∈G

fg(x)f(g
−1x).

Thus we have a homomorphism

(5.5) ̟∗(OX)[G]→ HomOY
(̟∗(OX), ̟∗(OX)).

Lemma 5.1.3. ̟∗(OX)[G] ∼= HomOY
(̟∗(OX), ̟∗(OX)).

Proof. We first prove the claim over the smooth locus Y sm of Y . We note that #̟−1(y) = #G, y ∈ Y sm.
We take a point z ∈ ̟−1(y). Then ̟∗(OX)|y = O̟−1(y) is identified with ⊕g∈GCgz as C[G]-modules. Let
χu(x) be the characteristic function of a point u ∈ X . Then {χgz|g ∈ G} is the base of ⊕g∈GCgz and
f(x) ∈ O̟−1(y) is decomposed into f(x) =

∑
g∈G f(gz)χgz(x). Since

(5.6) (χg′z(x)(g
′g−1)) · (

∑

h∈G

f(hz)χhz(x)) = f(gz)χg′z(x),

we see that

(5.7) (̟∗(OX)[G])|y → Hom(̟∗(OX)|y, ̟∗(OX)|y)

is an isomorphism. Since ̟∗(OX)[G] and HomOY
(̟∗(OX), ̟∗(OX)) are reflexive sheaves on Y , we get the

claim. �

We set A := ̟∗(OX)[G] ∼= HomOY
(̟∗(OX), ̟∗(OX)).

Lemma 5.1.4. We have an equivalence

(5.8)
̟∗ : CohG(X) ∼= CohA(Y )

E 7→ ̟∗(E)

whose inverse is ̟−1 : CohA(Y )→ CohG(X). In particular, we have an isomorphism

(5.9) HomG(E1, E2) = HomA(̟∗(E1), ̟∗(E2)), E1, E2 ∈ CohG(X).

Proof. Since the problem is local, we may assume that Y is affine. Then X is also affine. For F ∈ CohA(Y ),
H0(Y, F ) is a H0(Y,̟∗(OX))[G]-module. Hence H0(X,̟−1(F )) = H0(Y, F ) is a H0(X,OX)[G]-module,
which implies that ̟−1(F ) ∈ CohG(X). Then it is easy to see that ̟−1 is the inverse of ̟∗. �
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By Lemma 5.1.4, we have an equivalence ̟∗ : DG(X)→ DA(Y ). In particular,

(5.10) χG(E1, E2) =
∑

i

(−1)i dimHomA(̟∗(E1), ̟∗(E2)[i]), E1, E2 ∈ CohG(X).

For a representation ρ : G→ GL(Vρ) of G, we define a G-linearization on OX ⊗ Vρ in a usual way. Thus
we define the action of G on ̟∗(OX ⊗ Vρ) as
(5.11) g · (f(x)⊗ v) := f(g−1x)⊗ gv, g ∈ G, f(x) ∈ ̟∗(OX), v ∈ Vρ.
Then OX ⊗ C[G] is a G-sheaf such that ̟∗(OX ⊗ C[G]) = A and we have a decomposition

(5.12) OX ⊗ C[G] =
⊕

i

(OX ⊗ Vρi )⊕ dim ρi ,

where ρi are irreducible representations of G.

Definition 5.1.5. For a G-sheaf E and a representation ρ : G → GL(Vρ), E ⊗ ρ denotes the G-sheaf
E ⊗OX

(OX ⊗ Vρ).
Since ̟∗(OX ⊗ ρi) are direct summands of A, we get the following lemma.

Lemma 5.1.6. (1) Ai := ̟∗(OX ⊗ ρi) are local projective objects of CohA(Y ).
(2)

⊕
i̟∗(OX ⊗ ρi)⊕ri is a local projective generator of CohA(Y ) if and only if ri > 0 for all i.

For a local projective generator B of CohA(Y ), we set A′ := HomA(B,B). Then we have an equivalence

(5.13)
CohA(Y ) → CohA′(Y )

E 7→ HomA(B, E).

5.2. Stability for G-sheaves. Let α be an element of R(G)⊗Q.

Definition 5.2.1. Let OX(1) be the pull-back of an ample line bundle on Y . A coherent G-sheaf E is
α-stable, if E is purely d-dimensional and

(5.14)
χG(F (n)⊗ α∨)

ad(F )
<
χG(E(n)⊗ α∨)

ad(E)
, n≫ 0

for all proper subsheaf F 6= 0, where ad(∗) is the coefficient of nd of the Hilbert polynomial χG(∗(n)). We
also define the α-semi-stability as usual.

Remark 5.2.2. Assume that α =
∑
i riρi, ri > 0. We set B := ⊕iA⊕ri

i and A′ := HomA(B,B). Under the
equivalence

(5.15)
CohG(X) → CohA′(Y )

E 7→ HomA(B, ̟∗(E)),

(5.16) χG(E(n)⊗ α∨) = χ(HomA(B, ̟∗(E))(n))

implies that α-twisted stability of E corresponds to the stability of A′-module HomA(B, ̟∗(E)).

For a coherent G-sheaf E of dimension 0, we also have a refined notion of stability, which also comes from
the stability of 0-dimensional objects in CohA(Y ).

Definition 5.2.3. Let ρreg be the regular representation of G. A coherent G-sheaf E of dimension 0 is
(ρreg, α)-stable, if

(5.17)
χG(F ⊗ α∨)

χG(F ⊗ ρ∨reg)
<

χG(E ⊗ α∨)

χG(E ⊗ ρ∨reg)
for a proper subsheaf F 6= 0.

By [S, Thm. 4.7] and Proposition 1.6.1, we get the following theorem.

Theorem 5.2.4. (1) Assume that nα contains every irreducible representation for a sufficiently large

n. Then there is a coarse moduli space M
α

H(v) of α-semi-stable G-sheaves E with v(E) = v. M
α

H(v)
is a projective scheme. We denote the open subscheme consisting of α-stable G-sheaves by Mα

H(v).

(2) Assume that v is a 0-dimensional vector. Then there is a coarse moduli spaceM
ρreg,α

H (v) of (ρreg, α)-

semi-stable G-sheaves E with v(E) = v. M
ρreg,α

H (v) is a projective scheme. We denote the open
subscheme consisting of (ρreg, α)-stable G-sheaves by M

ρreg,α
H (v).

(3) If KX
∼= OX in CohG(X), then Mα

H(v) and M
ρreg,α
H (v) are smooth of dimension −χG(v, v)+2 with

holomorphic symplectic structures.

Remark 5.2.5. There is another construction due to Inaba [In].

For a smooth point y of Y , let v0 be the topological invariant of O̟−1(y).
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Lemma 5.2.6. A 0-dimensional G-sheaf E is v0-twisted stable if and only if E is an irreducible object of
CohG(X).

Proof. Let E be a G-sheaf of dimension 0. Then χG(E⊗ v∨0 )/ χG(E⊗ ρ∨reg) = 1. Hence the claim holds. �

Definition 5.2.7. Let G -HilbρX be the G-Hilbert scheme parametrizing 0-dimensional subschemes Z of X
such that H0(X,OZ) ∼= Vρ.

Let ρ0, ρ1, . . . , ρn be the irreducible representations of G. Assume that ρ0 is trivial. We take an α such
that (α, v0) = 0 and (α, ρi) < 0 for i > 0.

Lemma 5.2.8. M
ρreg,α
H (v0) = G -Hilb

ρreg
X . In particular, M

ρreg,α
H (v0) 6= ∅.

Proof. Let E be a G-sheaf with v(E) = v0. Since χG(OX ⊗ ρ0, E) = 1, we have a homomorphism φ : OX ⊗
ρ0 → E. ThenH0(imφ) contains a trivial representation, which implies that χG(OX⊗ρ0, imφ) ≥ 1. We note
that E belongs toM

ρreg,α
H (v0) if and only if E does not contain a proper subsheaf F with χG(OX⊗ρ0, F ) ≥ 1.

Hence if E ∈Mρreg,α
H (v0), then imφ = E, which implies that E ∈ G -Hilb

ρreg
X . Conversely, if E ∈ G -Hilb

ρreg
X ,

then for a subsheaf F with χG(OX ⊗ ρ0, F ) ≥ 1, HomG(OX ⊗ ρ0, F ) → HomG(OX ⊗ ρ0, E) is isomorphic.
Hence φ factors through F . Since E is generated by the image of φ, F = E. Thus E is stable. �

We set X ′ := M
ρreg,α
H (v0). Let Y ′ be the normalization of M

ρreg ,0

H (v0). Then we have a morphism
π : X ′ → Y ′.

Proposition 5.2.9. (1) Y ′ →M
ρreg,0

H (v0) is a bijective morphism.
(2) Let {p1, p2, . . . , pl} be the set of singular points of Y ′. Then each pi corresponds to S-equivalence

classes of properly v0-twisted semi-stable G-sheaves. Let ⊕sij=0E
⊕aij
ij be the S-equivalence class cor-

responding to pi. Then the matrix (χG(Eij , Eij′ ))j,j′≥0 is of affine type Ã, D̃, Ẽ.
(3) We can assume that ai0 = 1 for all i. Then pi is a rational double point of type A,D,E according

as the type of the matrix (χG(Eij , Eij′ ))j,j′≥1.
(4) We assume that ai0 = 1 for all i. For j 6= 0,

(5.18) Cij := {x′ ∈ X ′|HomG(Eij , E|{x′}×X) 6= 0}
is a smooth rational curve and π−1(pi) =

∑
j>0 aijCij .

Proof. Since H0(X,OZx′
) ∼= C[G], x′ ∈ X ′, we have

(5.19)
∑

j

aij χG(OX ⊗ ρ0, Eij) = χG(OX ⊗ ρ0,⊕jE
⊕aij
ij ) = 1.

Hence we may assume that ai0 = 1 and H0(X,Eij) does not contain a trivial representation, if j 6= 0. In
particular, χG(Eij ⊗α∨) < 0 for j > 0. Then the proof is similar to the proof of Theorem 2.2.17 and Lemma
2.2.18. �

5.3. Fourier-Mukai transforms for G-sheaves. Let E := OZ be the universal family and we consider
the Fourier-Mukai transform:

(5.20)
Φ : DG(X) → D(X ′)

E 7→ RπX′∗(E ⊗ π∗
X(E))G.

Then

(5.21)
Φ̂ : D(X ′) → DG(X)

F 7→ RπX∗(E∨[2]⊗ π∗
X′(F ))

is the quasi-inverse of Φ.
We note that pX′∗(OZ) is a locally free sheaf onX ′ with a G-action. We have a decomposition of pX′∗(OZ)

as G-sheaves:

(5.22) pX′∗(OZ) = ⊕iΦ(OX ⊗ ρi)⊗ ρ∨i .
For a G-sheaf E of dimension 0, E∨ = Ext2(E,OX)[−2]. Hence E is an irreducible object if and only if

E∨[2] is an irreducible object.

Lemma 5.3.1. We set Fij := E∨
ij [2] ∈ CohG(X).

(1)

(5.23) Φ(Fij) =

{
OCij

(−1)[1], j > 0,

OZi
, j = 0,

where Zi :=
∑

j aijCij is the fundamental cycle of pi.

(2) Φ(OX ⊗ ρi) is a locally free sheaf of rank dim ρi on X
′. In particular, Φ(OX ⊗ ρ0) = OX′ .
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(3) Φ(OX ⊗ ρi) is a full sheaf ([E]).

Proof. Let U be a G-invariant open subscheme of X . Then D := Supp(pY ∗(Z ∩ (Y × (X \U)))) is a proper
closed subset of Y and Zy ⊂ U if and only if y ∈ Y \D. If KU = OU as a G-sheaf, then we see that KY \D

is trivial. Since X has an open covering of these properties, by the Grauert-Riemenschneider vanishing

theorem, Rπ∗(OX′) = OY ′ . Outside of the fixed point loci of the G-action, Φ̂(OX′) coincides with OX ⊗ ρ0.
Hence Φ̂(OX′) = OX ⊗ ρ0. Therefore Φ(OX ⊗ ρ0) = OX′ . (2) is a consequence of (5.22). Then the proof of
(1) is similar to the Fourier-Mukai transform on a K3 surface. (3) We note that

Hom(Φ(OX ⊗ ρi),OCjk
(−1)) = Hom(Φ(OX ⊗ ρi),Φ(Fjk)[−1])

= HomG(OX ⊗ ρi, Fjk[−1]) = 0,

Ext1(Φ(OX ⊗ ρi),OZj
) = Ext1(Φ(OX ⊗ ρi),Φ(Fj0))
= Ext1G(OX ⊗ ρi, Fj0) = 0.

(5.24)

Hence Φ(OX ⊗ ρi) is a full sheaf. �

We have

(5.25) Φ(OX ⊗ ρi)|Cjk
∼= O⊕(dim ρi−kijk)

Cjk
⊕OCjk

(1)⊕kijk ,

where

kijk :=(c1(Φ(OX ⊗ ρi)), Cjk)
= dimExt1(Φ(OX ⊗ ρi),Φ(Fjk))
= dimHomG(OX ⊗ ρi, Fjk).

(5.26)

Proposition 5.3.2. Φ induces an equivalence

(5.27) CohG(X)→ −1 Per(X ′/Y ′).

Proof. It is sufficient to prove Φ(E) ∈ −1 Per(X ′/Y ′) for E ∈ CohG(X). We first prove that Hi(Φ(E)) = 0
for i 6= −1, 0. Let E be a G-sheaf on X . Then there is an equivariant locally free resolution of E:

(5.28) 0→ V−2 → V−1 → V0 → E → 0.

Since Φ(Vi) are locally free sheaves on X ′ and

(5.29) 0→ Φ(V−2)→ Φ(V−1)→ Φ(V0)

is exact on X ′ \ ∪iZi, we get Hi(Φ(E)) = 0 for i 6= −1, 0 and Supp(H−1(Φ(E))) ⊂ ∪iZi. Then we have

Hom(H0(Φ(E)),OCij
(−1)) = Hom(Φ(E),Φ(Fij)[−1])

= HomG(E,Fij [−1]) = 0, j > 0,

Hom(OZi
, H−1(Φ(E))) = Hom(Φ(Fi0),Φ(E)[−1])

= HomG(Fi0, E[−1]) = 0.

(5.30)

Hence Φ(E) ∈ −1 Per(X ′/Y ′). �

Remark 5.3.3. By the proof of Proposition 5.3.2, H−1(Φ(E)) = 0 if E does not contain a non-zero 0-
dimensional sub G-sheaf.

Proposition 5.3.4. For α =
∑
i riρi, ri > 0, we set P :=

⊕
i Φ(OX ⊗ ρi)⊕ri .

(1) P is a local projective generator of −1 Per(X ′/Y ′).
(2) A G-sheaf E is α-twisted stable if and only if Φ(E) is P -twisted stable.

Proof. Since

(5.31) χ(P,Φ(Fjk)) =
∑

i

riχG(OX ⊗ ρi, Fjk) =
∑

i

ri(ρi, H
0(X,Fjk)) > 0

for all j, k, (1) holds by Lemma 5.3.1 (3). (2) is obvious. �

Lemma 5.3.5. M
v0
H (v0) ∼= Y ′ ∼= X/G. In particular, M

v0
H (v0) is a normal surface with rational double

points.

Proof. We shall first show that M
v0
H (v0) ∼= Y ′. By Proposition 5.3.4, M

v0
H (v0) is isomorphic to the moduli

of 0-dimensional objects E of −1 Per(X ′/Y ′) with v(E) = v(Cx). By Lemma 2.2.12, we have the claim.
Let ∆ ⊂ X × X be the diagonal. Then G := ⊕g∈GO(1×g)∗(∆) is a G-equivariant coherent sheaf on

X ×X which is flat over X . Since v(G{x}×X) = v0, we have a morphism η : X → M
v0
H (v0). We note that

G|{x}×X ∼= G|{g(x)}×X for all g ∈ G and G|{x}×X ∼= G|{y}×X if and only if y ∈ Gx. Hence η is G-invariant and

we get an injective morphism X/G→M
v0
H (v0). It is easy to see that X/G→M

v0
H (v0) is an isomorphism. �

64



Corollary 5.3.6. We set P := Φ(OX ⊗ C[G]) and A′ := π∗(P
∨ ⊗ P ). Under the isomorphism Y ′ ∼= Y , we

have an isomorphism π∗(P ) ∼= ̟∗(OX). Hence we have an isomorphism A ∼= A′ as OY ′-algebras and we
have the following commutative diagram.

(5.32)

CohG(X)
Φ−−−−→ Per(X ′/Y ′)

̟∗

y
yRπ∗(P

∨⊗( ))

CohA(Y ) CohA′(Y )

Proof. We set R := OX ⊗ C[G]. Since Φ(OX ⊗ C[G]) ∼= ⊕iΦ(OX ⊗ ρi)
⊕ dim ρi ∼= pX′∗(OZ), π∗(P ) ∼=

π∗(pX′∗(OZ)) is a reflexive sheaf. Since π∗(pX′∗(OZ)) = ̟∗(OX) on the smooth locus, we get an isomor-
phism π∗(P ) ∼= ̟∗(OX). Since A′ is a reflexive sheaf on Y ′, we have A′ ∼= EndOY ′

(π∗(P )). Therefore
A′ ∼= EndOY ′ (π∗(P )) ∼= EndOY

(̟∗(OX)) ∼= A.
Since ̟∗(R) = A and every G-sheaf E has a locally free resolution

(5.33) · · · → R(−n−2)
⊕N−2 → R(−n−1)

⊕N−1 → R(−n0)
⊕N0 → E → 0,

we get the commutative diagram. �

Assume that X ′ is a K3 surface. For a primitive isotropic Mukai vector v0 on X ′, we set X ′′ :=Mw
H(v0),

where v0 := (r, ξ, a) is a primitive isotropic Mukai vector with 0 < (ξ, Cij) and (ξ,
∑

j aijCij) < r for all i, j

and w ∈ K(X ′)⊗Q is sufficiently close to v0. Assume that there is a universal family F on X ′×X ′′. Then

E ′ := Φ̂(F) is a flat family of stable G-sheaves and defines an equivalence Φ′ : DG(X)→ D(X ′′) such that

Φ′ = ΦE′

X′→X′′ ◦ Φ.
5.4. Irreducible objects of CohG(X). We shall study irreducible objects of CohG(X). Let E be a G-sheaf
of dimension 0. We may assume that Supp(E) = Gx. Let H be the stabilizer of x and Ex the submodule
of E whose support is x. Then Ex is a H-sheaf. We have a decomposition H0(X,E) = ⊕y∈GxH0(X,Ey).
Since gH0(X,Ex) = H0(X,Egx), we have an isomorphism

(5.34) H0(X,E) ∼= C[G]⊗C[H] H
0(X,Ex)

as G-modules. Then we have an equality of invariant subspaces:

(5.35) H0(X,E)G = H0(X,Ex)
H .

We shall prove that there is a bijection between

(a) G := {E ∈ CohG(X)| Supp(E) = Gx, Stab(x) = H} and
(b) H := {F ∈ CohH(X)| Supp(F ) = x}.

We define r : G → H by sending E ∈ G to Ex ∈ H. For F ∈ H, we set K := ker(H0(X,F ) ⊗ OX → F ).
Then

(5.36) s(F ) := (C[G]⊗C[H] H
0(X,F ))⊗OX/

∑

g∈G

g(K)

is a G-sheaf such that s(F )x = F . Hence we have a map s : H → G with r ◦ s = idH. For E ∈ G, we also
see that s(Ex) ∼= E, and hence s ◦ r = idG. Therefore our claim holds.

If H0(X,F ) is the regular representation of H , i.e., H0(X,F ) ∼= C[H ], then H0(X,E) is the regular
representation of G. Then we see that E is irreducible in CohG(X) if and only if Ex is irreducible in
CohH(X). Since Supp(Ex) is one point, it means that H0(X,Ex) is an irreducible representation of H and
Ex ∼= H0(X,Ex)⊗ Cx.

Lemma 5.4.1. Each singular point
⊕

j E
⊕aij
ij ∈ Mv0

H (v0) corresponds to an orbit Gxi with Stab(xi) 6= {e}
and (Eij)xi

= ρij ⊗ Cxi
, where ρij are irreducible representations of Stab(xi). Moreover

(5.37) χG(Eij , Eij′ ) = χStab(xi)(ρij ⊗ Cx, ρij′ ⊗ Cx).

Proof. If Supp(Eij) 6= Supp(Ei′j′), then χ(Eij , Ei′j′) = 0. Hence Supp(Eij) = Supp(Eij′ ) for all j, j
′. Hence

there is a point xi such that Gxi = Supp(Eij) for all j. Then the first part of the claim follows.
For the second claim, we note that χStab(xi)((⊕g∈G/ Stab(xi)ρij⊗Cgxi

)/ρij⊗Cxi
, ρij′ ⊗Cxi

) = 0. By using
an equivariant locally free resolution of Eij and (5.35), we see that

χG(Eij , Eij′ ) =χStab(xi)(Eij , (Eij′ )xi
)

=χStab(xi)((Eij)xi
, (Eij′ )xi

).
(5.38)

�

Example 5.4.2. Let X be an abelian surface. Then G = Z2 acts onX as the multiplication by (−1). Then the
moduli of stable G-sheaves on X is isomorphic to the moduli space of stable objects of −1 Per(Km(X)/Y ),
where Y = X/G and Km(X)→ Y is the Kummer surface associated to X .
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6. Appendix

6.1. Elementary facts on lattices.

Lemma 6.1.1. Assume that L ∼= Zn has an integral bilinear form ( , ). Let v be a primitive elenent of L
such that (v, v) = 0, (v, w) = (w, v) for any w. We set v⊥ := {x ∈ L|(v, x) = 0}. Assume that ( , )|v⊥ is

symmetric and there is an element u ∈ L⊗Q such that (u, v) = 0 and (v⊥ ∩ u⊥)/Zv is negative definite.

(1) If v =
∑s

i=0 aivi, ai ∈ Z>0 such that vi ∈ v⊥ ∩ u⊥, i = 0, 1, ..., s, (v2i ) = −2 and (vi, vj) ≥ 0 for

i 6= j. Then the matrix (−(vi, vj)i,j) is of affine type Ã, D̃, Ẽ.
(2) If v has two expressions

v =

s∑

i=0

aivi =

t∑

i=0

a′iv
′
i, ai, a

′
i ∈ Z>0(6.1)

such that vi, v
′
i ∈ v⊥ ∩ u⊥, (v2i ) = ((v′i)

2) = −2 and (w1, w2) ≥ 0 for different w1, w2 ∈ V1 ∪ V2,
where V1 := {v0, v1, . . . , vs} and V2 := {v′0, v′1, . . . , v′t}. Then V1 = V2 or ⊕iZvi ⊥ ⊕iZv′i.

Proof. (1) We first note that v0, v1, ..., vs are linearly independent over Q. We shall show that the dual
graph of {v0, v1, ..., vs} is connected. If we have a decomposition v = (

∑
i∈I1

aivi) + (
∑

i∈I2
aivi) such that

(vi, vj) = 0 for i ∈ I1, j ∈ I2, then 0 = (v2) = (
∑

i∈I1
aivi)

2 + (
∑

i∈I2
aivi)

2. Hence
∑

i∈I1
aivi,

∑
i∈I2

aivi ∈
Zv, which implies that the graph is connected. Then the standard arguments show the claim.

(2) I := {i|v′i ∈ V1} and J := {i|v′i 6∈ V1}. Then v = (
∑

i∈I a
′
iv

′
i) + (

∑
i∈J a

′
iv

′
i). If i ∈ J , then

0 = (vi, v) =
∑

j aj(v
′
i, vj) ≥ 0. Hence v′i ∈ (⊕iZvi)⊥. Then 0 = (v2) = ((

∑
i∈I a

′
iv

′
i)

2) + ((
∑

i∈J a
′
iv

′
i)

2).

Hence
∑

i∈I a
′
iv

′
i,
∑

i∈J a
′
iv

′
i ∈ Zv, which implies that I = ∅ or J = ∅. If J = ∅, then V2 ⊂ V1, and we see

that V1 = V2. If I = ∅, then all v′i belong to ⊕iZvi. Thus ⊕iZvi ⊥ ⊕iZv′i. �

Example 6.1.2. Let X be s smooth projective surface and H a divisor on X with (H2) > 0. We set L :=
ch(K(X)) and (x, y) := −

∫
X
x∨y tdX , x, y ∈ L. Then ̺X = ch(Cx) is primitive in L. Since Cx ⊗KX

∼= Cx,

(̺X , x) = (x, ̺X). Moreover ( , )|̺⊥
X

is symmetric. Since (̺⊥X ∩ ch(OH)⊥)/Z̺X ∼= {D ∈ NS(X)f |(H,D) =

0}, it is negative definite, where NS(X)f is the torsion free quotient of NS(X).

6.2. Existence of twisted semi-stable sheaves. Let X be a smooth projective surface and H an ample
divisor on X . Let e ∈ K(X)top be a toplogical invariant of a coherent sheaf on X .

Definition 6.2.1. A polarization H on X is general with respect to e, if for every µ-semi-stable sheaf E
with τ(E) = e and a subsheaf F 6= 0 of E,

(6.2)
(c1(F ), H)

rkF
=

(c1(E), H)

rkE
if and only if

c1(F )

rkF
=
c1(E)

rkE
.

If H is general with respect to e, then the G-twisted semi-stability does not depend on the choice of G.
The following is [M-W, Lem. 3.6]. For convenience’ sake, we give a proof.

Lemma 6.2.2. Assume that H is not general with respect to e and let ǫ be a sufficiently small Q-divisor such
that H+ǫ is general with respect to e. Then there is a locally free sheaf G such thatMG

H(e)ss =MH+ǫ(e)
ss.

Proof. We set

(6.3) F(e) :=
{
F ⊂ E

∣∣∣∣∣
E ∈ MH(e)µ-ss, E/F is torsion free

(c1(F ), H)/ rkF = (c1(E), H)/ rkE

}
.

Since F(e) is a bounded set, we have

(6.4) B := max

{∣∣∣∣
χ(E)

rkE
− χ(F )

rkF

∣∣∣∣
∣∣∣∣ (F ⊂ E) ∈ F(e)

}
<∞.

Assume that Nǫ ∈ NS(X). Let G be a locally free sheaf such that c1(G)/ rkG = −mǫ. If m ≥ (rk e)2NB,
then for (F ⊂ E) ∈ F(e),

(6.5)
χ(G,E(nH))

rkE
− χ(G,F (nH))

rkF
= m

(
c1(E)

rkE
− c1(F )

rkF
, ǫ

)
+
χ(E)

rkE
− χ(F )

rkF
≥ 0

if and only if

(1)

(6.6)

(
c1(E)

rkE
− c1(F )

rkF
, ǫ

)
≥ 0

or
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(2)

(6.7)
c1(E)

rkE
− c1(F )

rkF
= 0,

χ(E)

rkE
− χ(F )

rkF
≥ 0,

which is the semi-stability of E with respect to H + ǫ. Therefore the claim holds. �

Lemma 6.2.3. Let (X,H) be a polarized K3 surface and v = r + ξ + a̺X , ξ ∈ NS(X) a primitive Mukai
vector with 〈v2〉 ≥ −2. Then there is a G-twisted semi-stable sheaf E with v(E) = v for any G.

Proof. If H is general with respect to v, then there is a stable sheaf E with v(E) = v by [Y1, Thm. 8.1]

and [Y5]. By Lemma 6.2.2, there is a locally free sheaf G1 such that MG1

H (v)ss =MG1

H (v)s 6= ∅. For a G
withMG

H(v)
ss =MG

H(v)
s, we use [Y2, Prop. 4.1]. IfMG

H(v)ss 6=MG
H(v)s, then we can find a G′ such that

c1(G
′)/ rkG′ is sufficiently close to c1(G)/ rkG,MG′

H (v)ss =MG′

H (v)s 6= ∅ andMG′

H (v)ss ⊂MG
H(v)

ss. Thus
the claim also holds.

�

6.3. Spectral sequences. Since Φ̂[2] and Ψ̂ are the inverses of Φ and Ψ respectively, we get the followng.

Lemma 6.3.1. We have spectral sequences

(6.8) Ep,q2 = Φp(Φ̂q(E))⇒ Ep+q∞ =

{
E, p+ q = 2,

0, p+ q 6= 2,
E ∈ Per(X ′/Y ′),

(6.9) Ep,q2 = Φ̂p(Φq(F ))⇒ Ep+q∞ =

{
F, p+ q = 2,

0, p+ q 6= 2,
F ∈ C.

In particular,

(i) Φp(Φ̂q(E)) = 0, p = 0, 1.

(ii) Φp(Φ̂q(E)) = 0, p = 1, 2.

(iii) There is an injective homomorphism Φ0(Φ̂1(E))→ Φ2(Φ̂0(E)).

(iv) There is a surjective homomorphism Φ0(Φ̂2(E))→ Φ2(Φ̂1(E)).

Lemma 6.3.2. We have spectral sequences

(6.10) Ep,q2 = Ψp(Ψ̂−q(E))⇒ Ep+q∞ =

{
E, p− q = 0,

0, p− q 6= 0,
E ∈ Per(X ′/Y ′)D,

(6.11) Ep,q2 = Ψ̂p(Ψ−q(F ))⇒ Ep+q∞ =

{
F, p− q = 0,

0, p− q 6= 0,
F ∈ C.

In particular,

(i) Ψp(Ψ̂2(E)) = 0, p = 0, 1.

(ii) Ψp(Ψ̂0(E)) = 0, p = 1, 2.

(iii) There is an injective homomorphism Ψ0(Ψ̂1(E))→ Ψ2(Ψ̂2(E)).

(iv) There is a surjective homomorphism Ψ0(Ψ̂0(E))→ Ψ2(Ψ̂1(E)).

For a convenience of the reader, we give a proof of Lemma 6.3.2.

Proof. By the exact triangles

(6.12) Ψ≤1(E)[−1]→ Ψ(E)→ Ψ2(E)[−2]→ Ψ≤1(E)

and

(6.13) Ψ0(E)→ Ψ≤1(E)[−1]→ Ψ1(E)[−1]→ Ψ0(E)[1],

we have exact triangles

(6.14) Ψ̂(Ψ≤1(E))[1]← Ψ̂(Ψ(E))← Ψ̂(Ψ2(E))[2]← Ψ̂(Ψ≤1(E))

and

(6.15) Ψ̂(Ψ0(E))← Ψ̂(Ψ≤1(E))[1]← Ψ̂(Ψ1(E))[1]← Ψ̂(Ψ0(E))[−1].
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Since Ψ̂(Ψ(E)) = E, we have exact sequences

0← Ψ̂1(Ψ≤1(E))← E ← Ψ̂2(Ψ2(E))← Ψ̂0(Ψ≤1(E))← 0,

Ψ̂2(Ψ≤1(E)) = Ψ̂1(Ψ2(E)) = Ψ̂0(Ψ2(E)) = 0,

0← Ψ̂2(Ψ1(E))← Ψ̂0(Ψ0(E))← Ψ̂1(Ψ≤1(E))← Ψ̂1(Ψ1(E))← 0,

Ψ̂0(Ψ≤1(E)) ∼= Ψ̂0(Ψ1(E)),

Ψ̂1(Ψ0(E)) = Ψ̂2(Ψ0(E)) = 0.

(6.16)

These give the data of the spectral sequence. �
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