PERVERSE COHERENT SHEAVES AND FOURIER-MUKAI TRANSFORMS ON SURFACES

KŌTA YOSHIOKA

Abstract

We study perverse coherent sheaves on the resolution of rational double points. As examples, we consider rational double points on 2-dimensional moduli spaces of stable sheaves on $K 3$ and elliptic surfaces. Then we show that perverse coherent sheaves appears in the theory of Fourier-Mukai transforms. As an application, we generalize the Fourier-Mukai duality for $K 3$ surfaces to our situation.

Contents

0. Introduction 2
1. Perverse coherent sheaves and their moduli spaces.1.1. Tilting and Morita equivalence.4
1.2. Examples of perverse coherent sheaves 10
1.3. Families of perverse coherent sheaves. 17
1.4. Stability for perverse coherent sheaves. 19
1.5. A generalization of stability for 0-dimensional objects. 20
1.6. Construction of the moduli spaces of \mathcal{A}-modules of dimension 0 21
1.7. Twisted case. 22
2. Perverse coherent sheaves for the resolution of rational double points. 24
2.1. Perverse coherent sheaves on the resolution of rational singularities. 24
2.2. Moduli spaces of 0 -dimensional objects. 25
2.3. Fourier-Mukai transforms on X. 29
2.4. Construction of a local projective generator. 34
2.5. Deformation of a local projective generator. 37
3. Fourier-Mukai transform on a $K 3$ surface. 38
3.1. Basic results on the moduli spaces of dimension 2. 38
3.2. Proof of Theorem 3.1.5 40
3.3 . Walls and chambers for the moduli spaces of dimension 2. 42
3.4. A tilting appeared in $[\mathrm{Br} 4$ and its generalizations. 43
3.5. Equivalence between \mathfrak{A}_{1} and \mathfrak{A}_{2}^{μ}. 45
3.6. Fourier-Mukai duality for a $K 3$ surface. 484. Fourier-Mukai transforms on elliptic surfaces.
4.1. Moduli of stable sheaves of dimension 2.
3.7. Preservation of Gieseker stability conditions. 521. Fourier Mukai duality for an elliptic surface.
4.3. Tiltings of $\mathcal{C}, \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ and their equivalence.4.2. Fourier-Mukai duality for an elliptic surface.54
4.4. Preservation of Gieseker stability conditions. 5957
4. A category of equivariant coherent sheaves.
5.1. Morita equivalence for G-sheaves. 61
5.2. Stability for G-sheaves. 62
5.3. Fourier-Mukai transforms for G-sheaves 63
5.4. Irreducible objects of $\operatorname{Coh}_{G}(X)$ 65
5. Appendix 66
6.1. Elementary facts on lattices 66
6.2. Existence of twisted semi-stable sheaves 66
6.3. Spectral sequences 67
References 68
[^0]
0. Introduction

Let $\pi: X \rightarrow Y$ be a birational map such that $\operatorname{dim} \pi^{-1}(y) \leq 1, y \in Y$. Then Bridgeland $\operatorname{Br} 3$ introduced the abelian category ${ }^{p} \operatorname{Per}(X / Y)(\subset \mathbf{D}(X))$ of perverse coherent sheaves in order to show that flops of smooth 3 -folds preserves the derived categories of coherent sheaves. By using the moduli of perverse coherent sheaves on X, Bridgeland constructed the flop $X^{\prime} \rightarrow Y$ of $X \rightarrow Y$. Then the Fourier-Mukai transform by the universal family induces an equivalence $\mathbf{D}(X) \cong \mathbf{D}\left(X^{\prime}\right)$. In VB, Van den Bergh showed that ${ }^{p} \operatorname{Per}(X / Y)$ is Morita equivalent to the category $\operatorname{Coh}_{\mathcal{A}}(Y)$ of \mathcal{A}-modules on Y and gave a different proof of Bridgeland result, where \mathcal{A} is a sheaf of (non-commutative) algebras over Y. Although the main examples of the birational contraction are small contraction of 3 -folds, 2 -dimensional cases seem to be still interesting. In [NY1, NY2, Nakajima and the author studied perverse coherent sheaves for the blowing up $X \rightarrow Y$ of a smooth surface Y at a point. In this case, by analysing wall-crossing phenomena, we related the moduli of stable perverse coherent sheaves to the moduli of usual stable sheaves. Next example is the minimal resolution of a rational double point. Let G be a finite subgroup of $S U(2)$ acting on \mathbb{C}^{2} and set $Y:=\mathbb{C}^{2} / G$. Let $\pi: X \rightarrow Y$ be the resolution of Y. Then the relation between the perverse coherent sheaves and the usual coherent sheaves on X are discussed by Nakajima. Their moduli spaces are constructed as Nakajima's quiver varieties [N1] and their differences are described by the wall crossing phenomena [N2]. Toda T] also treated special cases. In this paper, we are interested in the global case. Thus we consider the minimal resolution $\pi: X \rightarrow Y$ of a normal projective surface Y with rational double points as singuralities.

As examples, we shall show that perverse coherent sheaves naturally appear if we consider the FourierMukai transforms on $K 3$ and elliptic surfaces. In our previous paper Y5, we studied Fourier-Mukai transforms defined by the moduli spaces of (semi)-stable sheaves Y^{\prime} on X. Our assumption is the genericity of the polarization. If the polarization is not general, then Y^{\prime} is singular at properly semi-stable sheaves. In this case, we still have the Fourier-Mukai transform by using the resolution X^{\prime} of Y^{\prime}. Then the category of perverse coherent sheaves on X^{\prime} naturally appears. In particular, we show that the universal family on $X^{\prime} \times X$ is the universal family of stable perverse coherent sheaves on X^{\prime} (Theorem 3.6.1). Thus we have a kind of duality between X and X^{\prime}, which is a generalization of the relation between an abelian variety and its dual. We call this kind of duality Fourier-Mukai duality. The Fourier-Mukai duality for a $K 3$ surface was studied by Bartocci, Bruzzo, Hernández Ruipérez [BH], Mukai Mu3, Orlov O], Bridgeland Br2], and was first proved by Huybrechts in [H] under the genericity of the polarization. He also proved that the Fourier-Mukai transform preserves nice abelian subcategories. We also give a generalization of this result (Theorem 3.5.8). Then we can generalize the result on the preservation of stability by the Fourier-Mukai transform in Y5] to our situation.

For the relative Fourier-Mukai transforms on elliptic surfaces, we also get similar results. Let G be a finite group acting on a projective surface X. Assume that K_{X} is the pull-back of a line bundle on $Y:=X / G$. Then the McKay correspondence VB implies that $\operatorname{Coh}_{G}(X)$ is equivalent to ${ }^{-1} \operatorname{Per}\left(X^{\prime} / Y\right)$, where $X^{\prime} \rightarrow Y$ is the minimal resolution of Y. The equivalence is given by a Fourier-Mukai transform associated to a moduli space of stable G-sheaves of dimension 0 . If X is a $K 3$ surface or an abelian surface, then we have many 2-dimensional moduli spaces of stable G-sheaves. We also treat the Fourier-Mukai transform induced by the moduli of G-sheaves.

In section we consider an abelian subcategory \mathcal{C} of $\mathbf{D}(X)$ which is Morita equivalent to $\operatorname{Coh}_{\mathcal{A}}(Y)$, where $\pi: X \rightarrow Y$ be a birational contraction from a smooth variety X and \mathcal{A} is a sheaf of (non-commutative) algebras over Y. We call an object of \mathcal{C} a perverse coherent sheaf. Since ${ }^{-1} \operatorname{Per}(X / Y)$ is Morita equivalent to $\operatorname{Coh}_{\mathcal{A}}(Y)$ for an algebra \mathcal{A} [VB], our definition is compatible with Bridgeland's definition. We also study irreducible objects and local projective generators of \mathcal{C}. As examples, we shall give generalizations of ${ }^{p} \operatorname{Per}(X / Y), p=-1,0$. We next explain families of perverse coherent sheaves and the relative version of Morita equivalence. Then we can use Simpson's moduli spaces of stable \mathcal{A}-modules $[\mathbf{S}$ to construct the moduli spaces of stable perverse coherent sheaves. Since Simpson's stability is not good enough for the 0 -dimensionional objects, we also introduce a refinement of the stability and construct the moduli space, which is close to King's stability K.

In section 2, we study perverse coherent sheaves on the resolution of rational double points. We first introduce two kind of categories $\operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ and $\operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)^{*}$ associated to a sequence of line bundles on the exceptional curves of the resolution of rational singularities and show that they are the category of perverse coherent sheaves in the sense in section 1. They are generalizations of ${ }^{-1} \operatorname{Per}(X / Y)$ and ${ }^{0} \operatorname{Per}(X / Y)$ respectively.

We next study the moduli of 0-dimensional objects on the resolution of rational double points. We introduce the wall and the chamber structure and study the Fourier-Mukai transforms induced by the moduli spaces. Under a suitable stability condition for $\mathbb{C}_{x}, x \in X$, we show that the category of perverse coherent sheaves is equivalent to ${ }^{-1} \operatorname{Per}(X / Y)$ (cf. Proposition 2.4.7). We also construct local projective generators under suitable conditions.

In section 3, we consider the Fourier-Mukai transforms on $K 3$ surfaces. We generalize known facts on the 2-dimensional moduli spaces of usual stable sheaves to those of stable objects. Then we define similar categories \mathfrak{A} and \mathfrak{A}^{μ} to those in $[\mathrm{Br} 4$, and generalize results in [H]. In particular, we study the relation of Fourier-Mukai transforms and the categories $\mathfrak{A}, \mathfrak{A}^{\mu}$ (Theorem 3.5.8). This result will be used to study Bridgeland's stable objects in MYY. We also prove the Fourier-Mukai duality (Theorem 3.6.1). Finally we give some conditions for the preservation of Gieseker stability conditions. Fourier-Mukai transforms on elliptic surfaces and Fourier-Mukai transforms by equivariant coherent sheaves are treated in sections 4 and 5.

Notation.

(i) For a scheme $X, \operatorname{Coh}(X)$ denotes the category of coherent sheaves on X and $\mathbf{D}(X)$ the bounded derived category of $\operatorname{Coh}(X)$. We denote the Grothendieck group of X by $K(X)$.
(ii) Let \mathcal{A} be a sheaf of \mathcal{O}_{X}-algebras on a scheme X which is coherent as an \mathcal{O}_{X}-module. Let $\operatorname{Coh}(X)$ be the category of coherent \mathcal{A}-modules on X and $\mathbf{D}_{\mathcal{A}}(X)$ the bounded derived category of $\operatorname{Coh}_{\mathcal{A}}(X)$.
(iii) Assume that X is a smooth projective variety. Let E be an object of $\mathbf{D}(X) . E^{\vee}:=\mathbf{R} \mathcal{H}$ om $o_{X}\left(E, \mathcal{O}_{X}\right)$ denotes the dual of E. We denote the rank of E by $\operatorname{rk} E$. For a fixed nef divisor H on $X, \operatorname{deg}(E)$ denotes the degree of E with respect to H. For $G \in K(X)$, rk $G>0$, we also define the twisted rank and degree by $\operatorname{rk}_{G}(E):=\operatorname{rk}\left(G^{\vee} \otimes E\right)$ and $\operatorname{deg}_{G}(E):=\operatorname{deg}\left(G^{\vee} \otimes E\right)$ respectively. We set $\mu_{G}(E):=\operatorname{deg}_{G}(E) / \mathrm{rk}_{G}(E)$, if $\operatorname{rk} E \neq 0$.
(iv) Integral functor. For two schemes X, Y and an object $\mathcal{E} \in \mathbf{D}(X \times Y), \Phi_{X \rightarrow Y}^{\mathcal{E}}: \mathbf{D}(X) \rightarrow \mathbf{D}(Y)$ is the integral functor

$$
\begin{equation*}
\Phi_{X \rightarrow Y}^{\mathcal{E}}(E):=\mathbf{R} p_{Y *}\left(\mathcal{E} \stackrel{\mathbf{L}}{\otimes} p_{X}^{*}(E)\right), E \in \mathbf{D}(X) \tag{0.1}
\end{equation*}
$$

where $p_{X}: X \times Y \rightarrow X$ and $p_{Y}: X \times Y \rightarrow Y$ are projections. If $\Phi_{X \rightarrow Y}^{\mathcal{E}}$ is an equivalence, it is said to be the Fourier-Mukai transform.
(v) $\mathbf{D}(X)_{o p}$ denotes the opposit category of $\mathbf{D}(X)$. We have a functor

$$
\begin{aligned}
D_{X}: \quad \mathbf{D}(X) & \rightarrow \\
& \mathbf{D}(X)_{o p} \\
E & \mapsto
\end{aligned} E^{\vee} .
$$

(vi) Assume X is a smooth projective surface.
(a) We set $H^{e v}(X, \mathbb{Z}):=\bigoplus_{i=0}^{2} H^{2 i}(X, \mathbb{Z})$. In order to describe the element x of $H^{e v}(X, \mathbb{Z})$, we use two kinds of expressions: $x=\left(x_{0}, x_{1}, x_{2}\right)=x_{0}+x_{1}+x_{2} \varrho_{X}$, where $x_{0} \in \mathbb{Z}, x_{1} \in H^{2}(X, \mathbb{Z}), x_{2} \in$ \mathbb{Z}, and $\int_{X} \varrho_{X}=1$. For $x=\left(x_{0}, x_{1}, x_{2}\right)$, we set $\mathrm{rk} x:=x_{0}$ and $c_{1}(x)=x_{1}$.
(b) We define a homomorphism

$$
\begin{array}{ccc}
\gamma: \quad K(X) & \rightarrow & \mathbb{Z} \oplus \mathrm{NS}(X) \oplus \mathbb{Z} \\
E & \mapsto & \left(\operatorname{rk} E, c_{1}(E), \chi(E)\right)
\end{array}
$$

and set $K(X)_{\text {top }}:=K(X) / \operatorname{ker} \gamma$. We denote $E \bmod \operatorname{ker} \gamma$ by $\tau(E) . K(X)_{\text {top }}$ has a bilinear form $\chi($,$) .$
(c) Mukai lattice. We define a lattice structure \langle,$\rangle on H^{e v}(X, \mathbb{Z})$ by

$$
\begin{aligned}
\langle x, y\rangle & :=-\int_{X} x^{\vee} \cup y \\
& =\left(x_{1}, y_{1}\right)-\left(x_{0} y_{2}+x_{2} y_{0}\right)
\end{aligned}
$$

where $x=\left(x_{0}, x_{1}, x_{2}\right)$ (resp. $\left.y=\left(y_{0}, y_{1}, y_{2}\right)\right)$ and $x^{\vee}=\left(x_{0},-x_{1}, x_{2}\right)$. It is now called the Mukai lattice. Mukai lattice has a weight-2 Hodge structure such that the (p, q)-part is $\bigoplus_{i} H^{p+i, q+i}(X)$. We set

$$
\begin{aligned}
H^{e v}(X, \mathbb{Z})_{\mathrm{alg}} & =H^{1,1}\left(H^{e v}(X, \mathbb{C})\right) \cap H^{e v}(X, \mathbb{Z}) \\
& \cong \mathbb{Z} \oplus \operatorname{NS}(X) \oplus \mathbb{Z}
\end{aligned}
$$

Let E be an object of $\mathbf{D}(X)$. If X is a $K 3$ surface or $\mathrm{rk} E=0$, we define the Mukai vector of E as

$$
v(E):=\operatorname{rk}(E)+c_{1}(E)+(\chi(E)-\operatorname{rk}(E)) \varrho_{X} \in H^{e v}(X, \mathbb{Z})
$$

Then for $E, F \in \mathbf{D}(X)$ such that the Mukai vectors are well-defined, we have

$$
\chi(E, F)=-\langle v(E), v(F)\rangle .
$$

(d) Since $\operatorname{deg}_{G}(E)$ is determined by the Chern character $\operatorname{ch}(E)$, we can also define $\operatorname{deg}_{G}(v), v \in$ $H^{e v}(X, \mathbb{Z})_{\text {alg }}$ by using $E \in \mathbf{D}(X)$ with $v(E)=v$.

1. Perverse coherent sheaves and their moduli spaces.

1.1. Tilting and Morita equivalence. Let X be a smooth projective variety and $\pi: X \rightarrow Y$ a birational map. Let $\mathcal{O}_{Y}(1)$ be an ample line bundle on Y and $\mathcal{O}_{X}(1):=\pi^{*}\left(\mathcal{O}_{Y}(1)\right)$. We are interested in a subcategory \mathcal{C} of $\mathbf{D}(X)$ such that
(i) \mathcal{C} is the heart of a bounded t-structure of $\mathbf{D}(X)$.
(ii) There is a local projective generator G of \mathcal{C} [VB]:
(a) $\mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}(G, E) \in \operatorname{Coh}(Y)$ for all $E \in \mathcal{C}$ and
(b) $\mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}(G, E)=0, E \in \mathcal{C}$ if and only if $E=0$.

By these properties, we get

$$
\begin{equation*}
\mathcal{C}=\left\{E \in \mathbf{D}(X) \mid \mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}(G, E) \in \operatorname{Coh}(Y)\right\} \tag{1.1}
\end{equation*}
$$

Definition 1.1.1. (1) A perverse coherent sheaf E is an object of \mathcal{C}. \mathcal{C} is the category of perverse coherent sheaves.
(2) For $E \in \mathbf{D}(X),{ }^{p} H^{i}(E) \in \mathcal{C}$ denotes the i-th cohomology object of E with respect to the t-structure.

The following is an easy consequence of the properties (a), (b) of G. For a convenience sake, we give a proof.
Lemma 1.1.2. Let G be a local projective generator of \mathcal{C}.
(1) For $E \in \mathcal{C}$, there is a locally free sheaf V on Y and a surjective morphism

$$
\begin{equation*}
\phi: \pi^{*}(V) \otimes G \rightarrow E \tag{1.2}
\end{equation*}
$$

in \mathcal{C}. In particular, we have a resolution

$$
\cdots \rightarrow \pi^{*}\left(V_{-1}\right) \otimes G \rightarrow \pi^{*}\left(V_{0}\right) \otimes G \rightarrow E \rightarrow 0
$$

of E such that $V_{i}, i \leq 0$ are locally free sheaves on Y.
(2) Let $G^{\prime} \in \mathcal{C}$ be a local projective object of $\mathcal{C}: \mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}\left(G^{\prime}, E\right) \in \operatorname{Coh}(Y)$ for all $E \in \mathcal{C}$. If G is a locally free sheaf, then G^{\prime} is also a locally free sheaf

Proof. (1) By the property (a) of G, we can take a morphism $\varphi: V \rightarrow \mathbf{R} \pi_{*} \mathbf{R} \mathcal{H}$ om (G, E) in $\mathbf{D}(Y)$ such that $V \rightarrow H^{0}\left(\mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}(G, E)\right)$ is surjective in $\operatorname{Coh}(Y)$. Since

$$
\begin{align*}
\operatorname{Hom}\left(\mathbf{L} \pi^{*}\left(\mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}(G, E)\right) \otimes G, E\right) & =\operatorname{Hom}\left(\mathbf{L} \pi^{*}\left(\mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}(G, E)\right), \mathbf{R} \mathcal{H o m}(G, E)\right) \\
& =\operatorname{Hom}\left(\mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}(G, E), \mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}(G, E)\right) \tag{1.4}
\end{align*}
$$

we have a morphism $\phi: \pi^{*}(V) \otimes G \rightarrow E$ such that the induced morphism $V \rightarrow \mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}\left(G, \pi^{*}(V) \otimes G\right) \rightarrow$ $\mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}(G, E)$ is φ. Then coker $\phi \in \mathcal{C}$ satisfies $\mathbf{R} \pi_{*} \mathbf{R H o m}(G$, coker $\phi)=0$. By our assumption on G, coker $\phi=0$. Thus ϕ is surjective in \mathcal{C}.
(2) We take a surjective homomorphism (1.2) for G^{\prime}. Let U be an affine open subset of Y. We note that

$$
\begin{equation*}
\operatorname{Hom}\left(G_{\mid \pi^{-1}(U)}^{\prime}, \operatorname{ker} \phi_{\mid \pi^{-1}(U)}[1]\right)=H^{1}\left(U, \mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}\left(G_{\mid \pi^{-1}(U)}^{\prime}, \operatorname{ker} \phi_{\mid \pi^{-1}(U)}\right)\right)=0 \tag{1.5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\operatorname{Hom}\left(G_{\mid \pi^{-1}(U)}^{\prime}, \pi^{*}(V) \otimes G_{\mid \pi^{-1}(U)}\right) \rightarrow \operatorname{Hom}\left(G_{\mid \pi^{-1}(U)}^{\prime}, G_{\mid \pi^{-1}(U)}^{\prime}\right) \tag{1.6}
\end{equation*}
$$

is surjective. Therefore $G_{\mid \pi^{-1}(U)}^{\prime}$ is a direct summand of $\pi^{*}(V) \otimes G_{\mid \pi^{-1}(U)}$.
From now on, we assume the following:

- G is a local projective generator of \mathcal{C} which is a locally free sheaf.

Proposition 1.1.3. (VB Lem. 3.2, Cor. 3.2.8]) We set $\mathcal{A}:=\pi_{*}\left(G^{\vee} \otimes G\right)$. Then we have an equivalence

$$
\begin{array}{ccc}
\mathcal{C} & \rightarrow & \operatorname{Coh}_{\mathcal{A}}(Y) \tag{1.7}\\
E & \mapsto & \mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right)
\end{array}
$$

whose inverse is $F \mapsto \pi^{-1}(F) \stackrel{\mathbf{L}}{\otimes} \pi^{-1}(\mathcal{A})$. Moreover this equivalence induces an equivalence $\mathbf{D}(X) \rightarrow \mathbf{D}_{\mathcal{A}}(Y)$.
Let $\mathcal{O}_{Y}(1)$ be an ample line bundle on Y. For $F \in \operatorname{Coh}_{\mathcal{A}}(Y)$, we have a surjective morphism $H^{0}(Y, F(n)) \otimes$ $\mathcal{A}(-n) \rightarrow F, n \gg 0$. Hence we have a resolution $V^{\bullet} \rightarrow F$ by locally free \mathcal{A}-modules V^{i}. If $V_{\mid U}^{i} \cong \mathcal{A}_{U}^{\oplus n}$ on an open subset of Y, then $\left(\pi^{-1}\left(V^{i}\right) \otimes_{\pi^{-1}(\mathcal{A})} G\right)_{\mid \pi^{-1}(U)} \cong G_{\mid \pi^{-1}(U)}^{\oplus n}$. Thus $\pi^{-1}(F) \stackrel{\mathrm{L}}{\otimes^{-1}(\mathcal{A})}$ G is isomorphic to $\pi^{-1}\left(V^{\bullet}\right) \otimes_{\pi^{-1}(\mathcal{A})} G$.

Assumption 1.1.4. From now on, we assume that $\operatorname{dim} \pi^{-1}(y) \leq 1$ for all $y \in Y$ and set

$$
\begin{equation*}
Y_{\pi}:=\left\{y \in Y \mid \operatorname{dim} \pi^{-1}(y)=1\right\} \tag{1.8}
\end{equation*}
$$

Lemma 1.1.5. Assume that $\operatorname{dim} \pi^{-1}(y) \leq 1$ for all $y \in Y$. Let G be a locally free sheaf on X and set

$$
\begin{align*}
T & :=\left\{E \in \operatorname{Coh}(X) \mid R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)=0\right\}, \\
S & :=\left\{E \in \operatorname{Coh}(X) \mid \pi_{*}\left(G^{\vee} \otimes E\right)=0\right\} . \tag{1.9}
\end{align*}
$$

(1) (T, S) is a torsion pair of $\operatorname{Coh}(X)$ such that $G \in T$ if and only if $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0$ and $S \cap T=0$.
(2) If (T, S) is a torsion pair such that $G \in T$, then G is a local projective generator of the tilted category

$$
\begin{equation*}
\mathcal{C}_{G}:=\left\{E \in \mathbf{D}(X) \mid H^{-1}(E) \in S, H^{0}(E) \in T, H^{i}(E)=0, i \neq-1,0\right\} \tag{1.10}
\end{equation*}
$$

(3) Assume that (T, S) is a torsion pair such that $G \in T$. If $\left(T^{\prime}, S^{\prime}\right)$ is a torsion pair of $\operatorname{Coh}(X)$ such that $G \in T^{\prime}$ and $S \cap T^{\prime}=0$, then $\left(T^{\prime}, S^{\prime}\right)=(T, S)$.
Proof. (1) We shall prove that (T, S) is a torsion pair under $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0$ and $S \cap T=0$. For $E \in \operatorname{Coh}(X)$, let $\phi: \pi^{*}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right) \otimes G \rightarrow E$ be the evaluation map. Then we see that $\pi_{*}\left(G^{\vee} \otimes \operatorname{coker} \phi\right)=0$, $R^{1} \pi_{*}\left(G^{\vee} \otimes \operatorname{im} \phi\right)=0$ and $R^{1} \pi_{*}\left(G^{\vee} \otimes E\right) \cong R^{1} \pi_{*}\left(G^{\vee} \otimes \operatorname{coker} \phi\right)$. Hence we have a desired decomposition

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow E \rightarrow E_{2} \rightarrow 0 \tag{1.11}
\end{equation*}
$$

where $E_{1}:=\operatorname{im} \phi \in T$ and $E_{2}:=\operatorname{coker} \phi \in S$.
(2) If (T, S) is a torsion pair, then for $E \in \mathcal{C}_{G}$, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow R^{1} \pi_{*}\left(G^{\vee} \otimes H^{-1}(E)\right) \rightarrow \mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right) \rightarrow \pi_{*}\left(G^{\vee} \otimes H^{0}(E)\right) \rightarrow 0 \tag{1.12}
\end{equation*}
$$

Hence $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right) \in \operatorname{Coh}(Y)$ and $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right)=0$ if and only if $R^{1} \pi_{*}\left(G^{\vee} \otimes H^{-1}(E)\right)=\pi_{*}\left(G^{\vee} \otimes E\right)=0$, which is equivalent to $H^{-1}(E), H^{0}(E) \in S \cap T=0$. Therefore G is a local projective generator of \mathcal{C}_{G}.
(3) We first prove that $T \subset T^{\prime}$. For an object $E \in T$, (2) implies that there is a surjective morphism $\phi: \pi^{*}(V) \otimes G \rightarrow E$ in \mathcal{C}_{G}, where V is a locally free sheaf on Y. Since ϕ is surjective in $\operatorname{Coh}(X)$ and $G \in T^{\prime}$, $E \in T^{\prime}$. Since $S \cap T^{\prime}=0$, we get $S \subset S^{\prime}$. Therefore $\left(T^{\prime}, S^{\prime}\right)=(T, S)$.

By the proof of Lemma 1.1.5, we get the following.
Corollary 1.1.6. Let G be a locally free sheaf on X which gives a local projective generator of \mathcal{C}_{G} in Lemma 1.1.5. Let E be a coherent sheaf on X and $\phi: \pi^{*}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right) \otimes G \rightarrow E$ the evaluation map. Then $E_{1}:=\operatorname{im} \phi \in T$ and $E_{2}:=\operatorname{coker} \phi \in S$. Thus we have a decomposition of E

$$
\begin{equation*}
0 \rightarrow \operatorname{im} \phi \rightarrow E \rightarrow \operatorname{coker} \phi \rightarrow 0 \tag{1.13}
\end{equation*}
$$

with respect to the torsion pair (T, S).
Lemma 1.1.7. Assume that the local projective generator $G \in \mathcal{C}$ is a locally free sheaf. We set

$$
\begin{align*}
T & :=\left\{E \in \operatorname{Coh}(X) \mid R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)=0\right\} \\
S & :=\left\{E \in \operatorname{Coh}(X) \mid \pi_{*}\left(G^{\vee} \otimes E\right)=0\right\} \tag{1.14}
\end{align*}
$$

Then (T, S) is a torsion pair of $\operatorname{Coh}(X)$ whose tilting is \mathcal{C}.
Proof. Since $G \in \mathcal{C}$, we have $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes G\right) \in \operatorname{Coh}(Y)$. By the definition of a local projective generator, we have $S \cap T=0$. By Lemma 1.1.5, (T, S) is a torsion pair. Let \mathcal{C}_{G} be the tilted category. Since $S[1], T \subset \mathcal{C}$, we get $\mathcal{C}_{G} \subset \mathcal{C}$. Conversely for $E \in \mathcal{C}$, we have a spectral sequence

$$
\begin{equation*}
E_{2}^{p, q}=R^{p} \pi_{*}\left(G^{\vee} \otimes H^{q}(E)\right) \Longrightarrow E_{\infty}^{p+q}=R^{p+q} \pi_{*}\left(G^{\vee} \otimes E\right) \tag{1.15}
\end{equation*}
$$

Since $\pi^{-1}(y) \leq 1$ for all $y \in Y$, this spectral sequence degenerates. Hence we have $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes H^{q}(E)\right)=0$ for $q \neq-1,0, \pi_{*}\left(G^{\vee} \otimes H^{-1}(E)\right)=0$ and $R^{1} \pi_{*}\left(G^{\vee} \otimes H^{0}(E)\right)=0$. Therefore $E \in \mathcal{C}_{G}$.

Lemma 1.1.8. For the locally free sheaf G on X and the tilted category \mathcal{C}_{G} in Lemma 1.1.5, we set

$$
\begin{align*}
T^{D} & :=\left\{E \in \operatorname{Coh}(X) \mid R^{1} \pi_{*}(G \otimes E)=0\right\} \\
S^{D} & :=\left\{E \in \operatorname{Coh}(X) \mid \pi_{*}(G \otimes E)=0\right\} \tag{1.16}
\end{align*}
$$

Then $\left(T^{D}, S^{D}\right)$ is a torsion pair and G^{\vee} is a local projective generator of the tilted category. We denote the tilted category by \mathcal{C}_{G}^{D}.
Proof. Since $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0, G^{\vee} \in T^{D}$. We show that $T^{D} \cap S^{D}=0$. Assume that $\mathbf{R} \pi_{*}(G \otimes E)=0$ for a coherent sheaf E on X. Since

$$
\begin{align*}
H^{i}\left(Y, \mathbf{R} \pi_{*}(G \otimes E)(-k)\right) & =H^{i}(X, G \otimes E(-k)) \\
& =H^{n-i}\left(X, G^{\vee} \otimes D_{X}(E)\left(K_{X}\right) \otimes \mathcal{O}_{X}(k)\right)^{\vee} \tag{1.17}\\
& =H^{n-i}\left(Y, \mathbf{R} \pi_{*}\left(G^{\vee} \otimes D_{X}(E)\left(K_{X}\right)\right)(k)\right)^{\vee}
\end{align*}
$$

for all $k \in \mathbb{Z}$ and $H^{j}\left(Y, H^{n-i}\left(\mathbf{R} \pi_{*}\left(G^{\vee} \otimes D_{X}(E)\left(K_{X}\right)\right)\right)(k)\right)=0$ for $k \gg 0$ and $j \neq 0$, we get $H^{n-i}\left(Y, \mathbf{R} \pi_{*}\left(G^{\vee} \otimes\right.\right.$ $\left.\left.D_{X}(E)\left(K_{X}\right)\right)(k)\right)=H^{0}\left(Y, H^{n-i}\left(\mathbf{R} \pi_{*}\left(G^{\vee} \otimes D_{X}(E)\left(K_{X}\right)\right)\right)(k)\right)=0$ for $k \gg 0$. Therefore $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes\right.$
$\left.D_{X}(E)\left(K_{X}\right)\right)=0$. Since $\operatorname{dim} \pi^{-1}(y) \leq 1$ for all $y \in Y$, we see that $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes H^{i}\left(D_{X}(E)\left(K_{X}\right)\right)\right)=$ $\mathbf{R} \pi_{*}\left(H^{i}\left(G^{\vee} \otimes D(E)\left(K_{X}\right)\right)\right)=0$ (see the proof of Lemma 1.1.7). Since G is a local projective generator of $\mathcal{C}_{G}, H^{i}\left(D_{X}(E)\left(K_{X}\right)\right)=0$ for all i. Therefore $D_{X}(E)\left(K_{X}\right)=0$, which implies that $E=0$.

Remark 1.1.9. If E is a local projective object of \mathcal{C}_{G}, that is, $R^{1} \pi_{*}\left(E^{\vee} \otimes F\right)=0$ for all $F \in \mathcal{C}_{G}$, then $E^{\vee} \in \mathcal{C}_{G}^{D}$. Indeed by $G \in \mathcal{C}_{G}$, we have $R^{1} \pi_{*}\left(E^{\vee} \otimes G\right)=0$, which implies that $E^{\vee} \in T^{D}$. Moreover since G^{\vee} is a local projective generator of \mathcal{C}^{D} and $R^{1} \pi_{*}\left(E \otimes G^{\vee}\right)=0, E^{\vee}$ is a local projective object of \mathcal{C}^{D}.

1.1.1. Irreducible objects of \mathcal{C}.

Lemma 1.1.10. Let G be a locally free sheaf on X such that $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes F\right) \neq 0$ for all non-zero coherent sheaf F on a fiber of π. Then for a coherent sheaf E on $X, \pi_{*}\left(G^{\vee} \otimes E\right)=0$ implies $R^{1} \pi_{*}\left(G^{\vee} \otimes E_{\mid \pi^{-1}(y)}\right) \neq 0$ for all $y \in \pi(\operatorname{Supp}(E))$.
Proof. Assume that $R^{1} \pi_{*}\left(G^{\vee} \otimes E_{\mid \pi^{-1}(y)}\right)=0$. By Lemma 1.1.16 below, $R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)=0$ in a neighborhood of y. Thus $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right)=0$ in a neighborhood of y. Then $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E \stackrel{\mathbf{L}}{\otimes} \mathbf{L} \pi^{*}\left(\mathbb{C}_{y}\right)\right)=\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right) \stackrel{\mathbf{L}}{\otimes} \mathbb{C}_{y}=0$. Since the spectral sequence

$$
\begin{equation*}
E_{2}^{p q}=R^{p} \pi_{*}\left(H^{q}\left(G^{\vee} \otimes E \stackrel{\mathbf{L}}{\otimes} \mathbf{L} \pi^{*}\left(\mathbb{C}_{y}\right)\right)\right) \Longrightarrow E_{\infty}^{p+q}=H^{p+q}\left(\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E \stackrel{\mathbf{L}}{\otimes} \mathbf{L} \pi^{*}\left(\mathbb{C}_{y}\right)\right)\right) \tag{1.18}
\end{equation*}
$$

degenerates, $R^{p} \pi_{*}\left(G^{\vee} \otimes E \otimes \pi^{*}\left(\mathbb{C}_{y}\right)\right)=0$. By our assumption on G, we have $E_{\mid \pi^{-1}(y)}=0$, which is a contradiction.

Definition 1.1.11. (1) An object $E \in \mathcal{C}$ is 0-dimensional, if $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right)$ is 0-dimensional as an object of $\operatorname{Coh}(Y)$.
(2) An object $E \in \mathcal{C}$ is irreducible, if E does not have a proper subobject except 0 .
(3) For a 0 -dimensional object $E \in \mathcal{C}$, we take a filtration

$$
\begin{equation*}
0 \subset F_{1} \subset F_{2} \subset \cdots \subset F_{s}=E \tag{1.19}
\end{equation*}
$$

such that F_{i} / F_{i-1} are irreducible objects of \mathcal{C}. Then $\oplus_{i} F_{i} / F_{i-1}$ is the Jordan-Hölder decomposition of E.

Remark 1.1.12. In section 1.4 , we shall define the dimension of E generally. According to the definition of the stability in Definition 1.4.1, we also have the following.
(1) A 0 -dimensional object E is G-twisted semi-stable and a G-twisted stable object corresponds to an irreducible object.
(2) The Jordan-Hölder decomposition of E is nothing but the standard representative of the S-equivalence class of E.

Lemma 1.1.13. Let G be a locally free sheaf on X and \mathcal{C}_{G} the tilted category in Lemma 1.1.5
(1) $\mathbb{C}_{x} \in \mathcal{C}_{G}$ for all $x \in X$.
(2) For $\mathbb{C}_{x}, x \in \pi^{-1}(y)$, the Jordan-Hölder decomposition does not depend on the choice of $x \in \pi^{-1}(y)$.
(3) Let $\oplus_{j=0}^{s_{y}} E_{y j}^{\oplus a_{y j}}$ be the Jordan-Hölder decomposition of $\mathbb{C}_{x}, x \in \pi^{-1}(y)$. Then the irreducible objects of \mathcal{C}_{G} are

$$
\begin{equation*}
\mathbb{C}_{x},\left(x \in X \backslash \pi^{-1}\left(Y_{\pi}\right)\right), \quad E_{y j},\left(y \in Y_{\pi}, 0 \leq j \leq s_{y}\right) \tag{1.20}
\end{equation*}
$$

In particular, if $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right)$ is a 0 -dimensional \mathcal{A}-module, then E is generated by (1.20).
Proof. (1) We note that $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes \mathbb{C}_{x}\right)=\pi_{*}\left(G^{\vee} \otimes \mathbb{C}_{x}\right)$. Hence $\mathbb{C}_{x} \in \mathcal{C}_{G}$. (2) Since the trace map $G^{\vee} \otimes G \rightarrow$ \mathcal{O}_{X} is surjective, we have a surjective map

$$
\begin{equation*}
R^{1} \pi_{*}\left(G^{\vee} \otimes G\right) \rightarrow R^{1} \pi_{*}\left(\mathcal{O}_{X}\right) \rightarrow R^{1} \pi_{*}\left(\mathcal{O}_{\pi^{-1}(y)_{\mathrm{red}}}\right) \tag{1.21}
\end{equation*}
$$

where $\pi^{-1}(y)_{\text {red }}$ is the reduced subscheme of $\pi^{-1}(y)$. Since $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0$, we get

$$
H^{1}\left(\pi^{-1}(y)_{\mathrm{red}}, \mathcal{O}_{\pi^{-1}(y)_{\mathrm{red}}}\right)=H^{0}\left(Y, R^{1} \pi_{*}\left(\mathcal{O}_{\pi^{-1}(y)_{\mathrm{red}}}\right)\right)=0
$$

Then we see that $\pi^{-1}(y)_{\text {red }}$ is a tree of smooth rational curves. Let $C_{y j}, j=0, \ldots, s_{y}$ be the irreducible component of $\pi^{-1}(y)_{\text {red }}$. Since the restriction map $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right) \rightarrow R^{1} \pi_{*}\left(G^{\vee} \otimes G_{\mid C_{y j}}\right)$ is surjective, $R^{1} \pi_{*}\left(G^{\vee} \otimes G_{\mid C_{y j}}\right)=0$. Thus we can write $G_{\mid C_{y j}} \cong \mathcal{O}_{C_{y j}}\left(d_{y j}\right)^{\oplus r_{y j}} \oplus \mathcal{O}_{C_{y j}}\left(d_{y j}+1\right)^{\oplus r_{y j}^{\prime}}$. Since $R^{1} \pi_{*}\left(G^{\vee} \otimes\right.$ $\left.\mathcal{O}_{C_{y j}}\left(d_{y j}\right)\right)=0$ and $\pi_{*}\left(G^{\vee} \otimes \mathcal{O}_{C_{y j}}\left(d_{y j}-1\right)\right)=0, \mathcal{O}_{C_{y j}}\left(d_{y j}\right), \mathcal{O}_{C_{y j}}\left(d_{y j}-1\right)[1] \in \mathcal{C}_{G}$. For $x \in C_{y j}$, we have an exact sequence in \mathcal{C}_{G}

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{C_{y j}}\left(d_{y j}\right) \rightarrow \mathbb{C}_{x} \rightarrow \mathcal{O}_{C_{y j}}\left(d_{y j}-1\right)[1] \rightarrow 0 \tag{1.22}
\end{equation*}
$$

Hence the Jordan-Hölder decomposition of \mathbb{C}_{x} is constant on $C_{y j}$. Since $\pi^{-1}(y)$ is connected, the JordanHölder decomposition of \mathbb{C}_{x} is determined by y.
(3) Let E be an irreducible object of \mathcal{C}_{G}. Then we have (i) $E=F[1], F \in \operatorname{Coh}(X)$ or (ii) $E \in \operatorname{Coh}(X)$. In the first case, since $F \in S$, we have $\pi_{*}\left(G^{\vee} \otimes F\right)=0$. By Lemma 1.1.10, we have $R^{1} \pi_{*}\left(G^{\vee} \otimes F_{\mid \pi^{-1}(y)}\right) \neq 0$ for $y \in \pi(\operatorname{Supp}(F))$, which implies that there is a quotient $F_{\mid \pi^{-1}(y)} \rightarrow F^{\prime}$ such that $0 \neq F^{\prime} \in S$ for $y \in \pi(\operatorname{Supp}(F))$. Then we have a non-trivial morphism $F[1] \rightarrow F^{\prime}[1]$, which should be injective in \mathcal{C}_{G}. Therefore $\pi(\operatorname{Supp}(F))$ is a point. In the second case, we also see that $\pi(\operatorname{Supp}(E))$ is a point. Therefore $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right)$ is a 0 -dimensional sheaf. (i) If $E=F[1]$, then since $\pi_{*}\left(G^{\vee} \otimes F\right)=0, F$ is purely 1-dimensional. Then $\operatorname{Hom}\left(\mathbb{C}_{x}, F[1]\right)=\operatorname{Hom}\left(D(F)[n-1], D\left(\mathbb{C}_{x}\right)[n]\right) \neq 0$ for $x \in \operatorname{Supp}(F)$, where $n=\operatorname{dim} X$. Hence we have a non-trivial morphism $E_{y j} \rightarrow E, y \in \pi(\operatorname{Supp}(F)) \cap Y_{\pi}$, which is an isomorphism. (ii) If $E \in \operatorname{Coh}(X)$, then $\operatorname{Hom}\left(E, \mathbb{C}_{x}\right) \neq 0$ for $x \in \operatorname{Supp}(E)$, which also implies that $E \cong E_{y j}$ for $\operatorname{Supp}(E) \subset \pi^{-1}(y)$ or $E \cong \mathbb{C}_{x}$ for $\operatorname{Supp}(E) \subset X \backslash Y_{\pi}$.
Remark 1.1.14. Since $\pi_{*}\left(G^{\vee} \otimes \mathbb{C}_{x}\right)$ is a coherent sheaf on the reduced point $\{y\}$, the multiplication $\pi^{*}(t)$: $E_{y j} \rightarrow E_{y j}, t \in I_{y}$ is zero. Thus $H^{i}\left(E_{y j}\right)$ are coherent sheaves on the scheme $\pi^{-1}(y)$.
Lemma 1.1.15. Let E be a coherent sheaf such that $\pi(\operatorname{Supp}(E))=\{y\}$.
(1) For $E \in T$ with $\operatorname{Supp}(E) \subset \pi^{-1}(y)$, there is a filtration

$$
\begin{equation*}
0 \subset F_{1} \subset F_{2} \subset \cdots \subset F_{s}=E \tag{1.23}
\end{equation*}
$$

such that for every F_{k} / F_{k-1}, there is $E_{y j} \in T$ and a surjective homomorphism $E_{y j} \rightarrow F_{k} / F_{k-1}$ in $\operatorname{Coh}(X)$.
(2) For $E \in S$, there is a filtration

$$
\begin{equation*}
0 \subset F_{1} \subset F_{2} \subset \cdots \subset F_{s}=E \tag{1.24}
\end{equation*}
$$

such that for every F_{k} / F_{k-1}, there is $E_{y j}[-1] \in S$ and an injective homomorphism $F_{k} / F_{k-1} \rightarrow$ $E_{y j}[-1]$ in $\operatorname{Coh}(X)$.
Proof. (1) Since $E \in T, E$ contains $E_{y j}$ in \mathcal{C}. Let F be the quotient in \mathcal{C}. Then we have an exact sequence

$$
\begin{equation*}
0 \rightarrow H^{-1}\left(E_{y j}\right) \rightarrow 0 \rightarrow H^{-1}(F) \rightarrow H^{0}\left(E_{y j}\right) \rightarrow E \rightarrow H^{0}(F) \rightarrow 0 \tag{1.25}
\end{equation*}
$$

Hence $E_{y j} \in T$ and $H^{0}(F) \in T$. We set $F_{1}:=\operatorname{im}\left(E_{y j} \rightarrow E\right)$ in $\operatorname{Coh}(X)$. Since $E / F_{1} \in T$ and $\operatorname{Supp}\left(E / F_{1}\right) \subset$ $\pi^{-1}(y)$, by the induction on the support of E, we get the claim.
(2) Since $E \in S$, there is a quotient $E[1] \rightarrow E_{y j}$ in \mathcal{C}. Let F be the kernel in \mathcal{C}. Then we have an exact sequence

$$
\begin{equation*}
0 \rightarrow H^{-1}(F) \rightarrow E \rightarrow H^{-1}\left(E_{y j}\right) \rightarrow H^{0}(F) \rightarrow 0 \rightarrow H^{0}\left(E_{y j}\right) \rightarrow 0 \tag{1.26}
\end{equation*}
$$

Hence $E_{y j}[-1] \in S$ and $H^{-1}(F) \in S$. We set $E^{\prime}:=\operatorname{im}\left(E \rightarrow H^{-1}\left(E_{y j}\right)\right)$ in $\operatorname{Coh}(X)$. Then E^{\prime} is a subsheaf of $E_{y j}[-1]$ and E is an extension of E^{\prime} by $H^{-1}(F) \in S$. Since $\operatorname{Supp}\left(H^{-1}(F)\right) \subset \pi^{-1}(y)$, by the induction on the support of E, we get the claim.

Lemma 1.1.16. (1) $\pi^{*}\left(\pi_{*}\left(I_{\pi^{-1}(y)}\right)\right) \rightarrow I_{\pi^{-1}(y)}$ is surjective. In particular, $\operatorname{Hom}\left(I_{\pi^{-1}(y)}, \mathcal{O}_{C_{y j}}(-1)\right)=$ 0 for all j.
(2) $\operatorname{Ext}^{1}\left(\mathcal{O}_{\pi^{-1}(y)}, \mathcal{O}_{C_{y j}}(-1)\right)=0$ for all j. In particular,

$$
H^{1}\left(X, \mathcal{H o m}\left(\mathcal{O}_{\pi^{-1}(y)}, \mathcal{O}_{C_{y j}}(-1)\right)\right)=H^{0}\left(X, \mathcal{E} x t^{1}\left(\mathcal{O}_{\pi^{-1}(y)}, \mathcal{O}_{C_{y j}}(-1)\right)\right)=0
$$

(3) For a coherent sheaf E on $X, R^{1} \pi_{*}(E)=0$ at y if and only if $R^{1} \pi_{*}\left(E_{\mid \pi^{-1}(y)}\right)=0$.

Proof. Since $I_{\pi^{-1}(y)}=\operatorname{im}\left(\pi^{*}\left(I_{y}\right) \rightarrow \mathcal{O}_{X}\right)$, (1) holds. (2) Since $\operatorname{Hom}\left(\mathcal{O}_{X}, \mathcal{O}_{C_{y j}}(-1)[k]\right)=0$ for all j and k, the first claim follows from the exact sequence

$$
\begin{equation*}
0 \rightarrow I_{\pi^{-1}(y)} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{\pi^{-1}(y)} \rightarrow 0 \tag{1.27}
\end{equation*}
$$

Since $H^{2}\left(X, \mathcal{H o m}\left(\mathcal{O}_{\pi^{-1}(y)}, \mathcal{O}_{C_{y j}}(-1)\right)\right)=0$, the second claim follows from the local-global spectral sequence.
(3) The proof is similar to Is1. Assume that $R^{1} \pi_{*}\left(E_{\mid \pi^{-1}(y)}\right)=0$. We take a locally free sheaf V on Y such that $V \rightarrow I_{y}$ is surjective. Then (1) implies that $\pi^{*}(V) \rightarrow I_{\pi^{-1}(y)}$ is surjective. Hence we have a surjective homomorphism $\pi^{*}\left(V^{\otimes n}\right) \otimes \mathcal{O}_{\pi^{-1}(y)} \rightarrow I_{\pi^{-1}(y)}^{n} / I_{\pi^{-1}(y)}^{n+1}$. Then we see that $R^{1} \pi_{*}\left(E \otimes \mathcal{O}_{X} / I_{\pi^{-1}(y)}^{n}\right)=0$. By the theorem of formal functions, we get the claim.
Lemma 1.1.17. Let $E_{y j}, y \in Y_{\pi}$ be the irreducible objects of \mathcal{C}_{G}. Let E be a coherent sheaf on X. If $\operatorname{Hom}\left(E, E_{y j}[-1]\right)=0$ for all $E_{y j}[-1] \in S$, then $E \in T$.
Proof. We note that $\operatorname{Hom}\left(E_{\mid \pi^{-1}(y)}, E_{y j}[-1]\right)=0$ for all $E_{y j}[-1] \in S$. By Lemma1.1.15 $(2), E_{\mid \pi^{-1}(y)} \in T$. Then $R^{1} \pi_{*}\left(G^{\vee} \otimes E_{\mid \pi^{-1}(y)}\right)=0$. By Lemma 1.1.16, $R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)=0$ in a neighborhood of y. Since y is any point of $Y_{\pi}, R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)=0$, which implies that $E \in T$.

For a subcategory \mathcal{C} of $\mathbf{D}(X)$, we set

$$
\begin{equation*}
\mathcal{C}_{y}:=\left\{E \in \mathcal{C} \mid \pi\left(\operatorname{Supp}\left(H^{i}(E)\right)\right)=\{y\}, i \in \mathbb{Z}\right\} \tag{1.28}
\end{equation*}
$$

Lemma 1.1.18. Let (S, T) be a torsion pair of $\operatorname{Coh}(X)$ and \mathcal{C} the tilted category. Assume that
(i) $\# Y_{\pi}<\infty$ and every object of $\mathcal{C}_{y}, y \in Y$ is of finite length.
(ii) $\mathbb{C}_{x} \in \mathcal{C}$ for all $x \in X$.
(iii) $\pi(\operatorname{Supp}(E)) \subset Y_{\pi}$ for $E \in S$.

Then the claims of Lemma 1.1.15 and Lemma 1.1.17 hold.
Proof. By (i) and (iii), irreducible objects are $E=\mathbb{C}_{x}, x \in X \backslash \pi^{-1}\left(Y_{\pi}\right)$ or irreducible objects of $\mathcal{C}_{y}, y \in Y_{\pi}$. By (ii), we get Lemma 1.1.13(3). The other claims of Lemma 1.1.13 and Lemma 1.1.15 are obvious. For $0 \neq E \in$ S, (i) and Lemma 1.1 .15 imply that there is a coherent sheaf $E_{y j}[-1] \in S$ such that $\operatorname{Hom}\left(E, E_{y j}[-1]\right) \neq 0$. Hence Lemma 1.1.17 also holds.

Proposition 1.1.19. Assume that $Y_{\pi}=\left\{p_{1}, \ldots, p_{m}\right\}$. Let G be a locally free sheaf on X and \mathcal{C}_{G} the tilted category in Lemma 1.1.5. For $\mathbb{C}_{x}, x \in \pi^{-1}\left(p_{i}\right)$, let $\oplus_{j=0}^{s_{i}} E_{i j}^{\oplus a_{i j}}$ be the Jordan-Hölder decomposition of \mathbb{C}_{x}, where $E_{i j}$ are irreducible objects.
(1) We set

$$
\begin{align*}
& \Sigma:=\left\{E_{i j}[-1] \mid i, j\right\} \cap \operatorname{Coh}(X) \\
& \mathcal{T}:=\{E \in \operatorname{Coh}(X) \mid \operatorname{Hom}(E, c)=0, c \in \Sigma\} \tag{1.29}\\
& \mathcal{S}:=\{E \in \operatorname{Coh}(X) \mid E \text { is a successive extension of subsheaves of } c \in \Sigma\} .
\end{align*}
$$

Then $(\mathcal{T}, \mathcal{S})$ is a torsion pair of $\operatorname{Coh}(X)$ whose tilting is \mathcal{C}_{G}. In particular, \mathcal{C}_{G} is characterized by Σ.
(2) \mathcal{C}_{G}^{D} is characterized by

$$
\begin{equation*}
\Sigma:=\left\{\left(D_{X}\left(E_{i j}\right) \otimes K_{X}[n]\right)[-1] \mid i, j\right\} \cap \operatorname{Coh}(X)=D_{X}\left(\left\{E_{i j} \mid i, j\right\} \cap \operatorname{Coh}(X)\right) \otimes K_{X}[n-1] \tag{1.30}
\end{equation*}
$$

where $n=\operatorname{dim} X$.
Proof. (1) For $E \in \operatorname{Coh}(X)$, we consider $\phi: G \otimes \pi^{*}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right) \rightarrow E$. We set $E_{1}:=\operatorname{im} \phi$ and $E_{2}:=\operatorname{coker} \phi$. Since $\operatorname{Hom}\left(G, E_{i j}[-1]\right)=0$ for all $E_{i j}, G \in \mathcal{T}$. Hence $E_{1} \in \mathcal{T}$. We shall show that $E_{2} \in \mathcal{S}$. We note that $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E_{1}\right)=\pi_{*}\left(G^{\vee} \otimes E_{1}\right)$ and $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E_{2}\right)=R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)[-1]$. Then $E_{1}, E_{2}[1] \in \mathcal{C}_{G}$. Since $\operatorname{Supp}\left(E_{2}\right) \subset \cup_{i=1}^{n} \pi^{-1}\left(p_{i}\right)$, Lemma 1.1.13 (3) implies that $E_{2}[1]$ is generated by $E_{i j}$. Hence if $E_{2} \neq 0$, then $\operatorname{Hom}\left(E_{2}[1], c[1]\right) \neq 0$ for an object $c \in \Sigma$. Let E_{2}^{\prime} be the kernel of $E_{2} \rightarrow c$ in $\operatorname{Coh}(X)$. Then $E_{2}^{\prime}[1] \in \mathcal{C}_{G}$. Hence by the induction on the support of E_{2}, we see that $E_{2} \in \mathcal{S}$. Therefore $(\mathcal{T}, \mathcal{S})$ is a torsion pair of $\operatorname{Coh}(X)$. We also see that

$$
\begin{align*}
\mathcal{T} & =\left\{E \in \operatorname{Coh}(X) \mid R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)=0\right\} \\
\mathcal{S} & =\left\{E \in \operatorname{Coh}(X) \mid \pi_{*}\left(G^{\vee} \otimes E\right)=0\right\} \tag{1.31}
\end{align*}
$$

and \mathcal{C}_{G} is the tilting of $\operatorname{Coh}(X)$.
(2) We note that $\mathbb{C}_{x}, x \in \pi^{-1}\left(p_{i}\right)$ is S-equivalent to $\oplus_{j=0}^{s_{i}} D_{X}\left(E_{i j}\right) \otimes K_{X}[n]^{\oplus a_{i j}}$, where $D_{X}\left(E_{i j}\right) \otimes K_{X}[n] \in$ \mathcal{C}_{G}^{D}. Hence the claim follows from (1).
1.1.2. Local projective generators of \mathcal{C}. Let (S, T) be a torsion pair of $\operatorname{Coh}(X)$ such that the tilted category \mathcal{C} satisfies one of the following conditions.
(1) There is a local projective generator $G \in T$ of \mathcal{C}, that is, \mathcal{C} is the category of perverse coherent sheaves or
(2) \mathcal{C} satisfies the following conditions:
(a) $\# Y_{\pi}<\infty$ and every object of $\mathcal{C}_{y}, y \in Y$ is of finite length.
(b) $\pi(\operatorname{Supp}(E)) \subset Y_{\pi}$ for $E \in S$.

We shall give a criterion for a two term complex to be a local projective generator of \mathcal{C}. Let $E_{y j}, j \in J_{y}$ be the irreducible objects of \mathcal{C}_{y}.
Lemma 1.1.20. Let E be an object of $\mathbf{D}(X)$ such that $H^{i}(E)=0$ for $i \neq-1,0$. If $\operatorname{Ext}^{1}\left(E, \mathbb{C}_{x}\right)=0$, then E is a free sheaf in a neighborhood of x.

Proof. Since E fits in the exact triangle

$$
\begin{equation*}
0 \rightarrow H^{-1}(E)[1] \rightarrow E \rightarrow H^{0}(E) \rightarrow H^{-1}(E)[2] \tag{1.32}
\end{equation*}
$$

we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(H^{0}(E), \mathbb{C}_{x}\right) \rightarrow \mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(E, \mathbb{C}_{x}\right) \rightarrow \mathcal{H o m}_{\mathcal{O}_{X}}\left(H^{-1}(E), \mathbb{C}_{x}\right) \rightarrow \mathcal{E} x t_{\mathcal{O}_{X}}^{2}\left(H^{0}(E), \mathbb{C}_{x}\right) \tag{1.33}
\end{equation*}
$$

Since $\operatorname{Ext}^{1}\left(E, \mathbb{C}_{x}\right)=H^{0}\left(X, \mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(E, \mathbb{C}_{x}\right)\right), \mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(E, \mathbb{C}_{x}\right)=0$. Then $\mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(H^{0}(E), \mathbb{C}_{x}\right)=0$, which implies that $H^{0}(E)$ is a free sheaf in a neighborhood of x. Then $\mathcal{E} x t_{\mathcal{O}_{X}}^{i}\left(H^{0}(E), \mathbb{C}_{x}\right)=0$ for $i>0$. Hence $\mathcal{H o m}_{\mathcal{O}_{X}}\left(H^{-1}(E), \mathbb{C}_{x}\right)=0$. Therefore $H^{-1}(E)=0$ in a neighborhood of x.

Lemma 1.1.21. Let $E_{y j}, y \in Y$ be the irreducible objects of \mathcal{C} in Lemma1.1.13. Let G_{1} be a locally free sheaf of rank r on X such that
(a) $\operatorname{Hom}\left(G_{1}, E_{y j}[p]\right)=0, p \neq 0$
(b) $\chi\left(G_{1}, E_{y j}\right)>0$
for all y, j.
(1) G_{1} is a locally free sheaf. If $0 \neq E \in S$, then $\pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0$ and $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E\right) \neq 0$.
(2) If $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0$, then $E \in T$.
(3) If $0 \neq E \in T$ and $\operatorname{Supp}(E) \subset \pi^{-1}(y)$, then $\pi_{*}\left(G_{1}^{\vee} \otimes E\right) \neq 0$ and $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0$. In particular, $\chi\left(G_{1}, E\right)>0$.
Proof. (1) We note that $G_{1} \in T$ by Lemman1.1.17. We first treat the case where \mathcal{C} is the category of perverse coherent sheaves. We consider the homomorphism $\pi^{*}\left(\pi_{*}\left(G_{1}^{\vee} \otimes E\right)\right) \otimes G_{1} \rightarrow E$. Then im $\phi \in T \cap S=0$. Since $\pi_{*}\left(G_{1}^{\vee} \otimes \operatorname{im} \phi\right)=\pi_{*}\left(G_{1}^{\vee} \otimes E\right)$, we get $\pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0$. Let $F \neq 0$ be a coherent sheaf on a fiber and take the decomposition

$$
\begin{equation*}
0 \rightarrow F_{1} \rightarrow F \rightarrow F_{2} \rightarrow 0 \tag{1.35}
\end{equation*}
$$

with $F_{1} \in T, F_{2} \in S$. Since $F_{1}, F_{2}[1] \in \mathcal{C}$, the condition $\chi\left(G_{1}, E_{y j}\right)>0$ implies that $\chi\left(G_{1}, F_{1}\right)>0$ or $\chi\left(G_{1}, F_{2}\right)<0$, which imply that $\pi_{*}\left(G_{1}^{\vee} \otimes F_{1}\right) \neq 0$ or $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes F_{2}\right) \neq 0$. Since $\pi_{*}\left(G_{1}^{\vee} \otimes F_{1}\right)$ is a subsheaf of $\pi_{*}\left(G_{1}^{\vee} \otimes F\right)$ and $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes F_{2}\right)$ is a quotient of $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes F\right)$, we get $\mathbf{R} \pi_{*}\left(G_{1}^{\vee} \otimes F\right) \neq 0$. Then we can apply Lemma 1.1.10 to E and get $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E_{\mid \pi^{-1}(y)}\right) \neq 0$ for $y \in \pi(\operatorname{Supp}(E))$. Since $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E\right) \rightarrow R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E_{\mid \pi^{-1}(y)}\right) \neq 0$ is surjective, we get the claim.

We next assume that $\# Y_{\pi}<\infty$. Then $E[1]$ is generated by $E_{y j}$. Hence (1.34) imply that $\chi\left(G_{1}, E[1]\right)>0$ and $\mathbf{R} \pi_{*}\left(G_{1}^{\vee} \otimes E[1]\right) \in \operatorname{Coh}(Y)$. Hence $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E\right) \neq 0$ and $\pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0$.
(2) For $E \in \operatorname{Coh}(X)$, we take a decomposition

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow E \rightarrow E_{2} \rightarrow 0 \tag{1.36}
\end{equation*}
$$

such that $E_{1} \in T$ and $E_{2} \in S$. If $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0$, then (1) implies that $E_{2}=0$.
(3) By Lemma 1.1.15 we may assume that E is a quotient of $E_{y j}, E_{y j} \in T$ in $\operatorname{Coh}(X)$. Since $E_{y j}$ is irreducible, $\phi: E_{y j} \rightarrow E$ is injective in \mathcal{C}. We set $F:=\operatorname{ker}\left(E_{y j} \rightarrow E\right)$ in $\operatorname{Coh}(X)$. Then $F \in S$ and $F[1]$ is the cokernel of ϕ in \mathcal{C}. Hence $\pi_{*}\left(G_{1}^{\vee} \otimes F\right)=0$ by (1). By our assumption, $\pi_{*}\left(G_{1}^{\vee} \otimes E_{y j}\right) \neq 0, E_{y j} \in T$ and $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E_{y j}\right)=0$. Therefore our claim holds.

Proposition 1.1.22. Let G_{1} be an object of $\mathbf{D}(X)$ such that $H^{i}(E)=0$ for $i \neq-1,0$ and satisfies

$$
\text { (a) } \operatorname{Hom}\left(G_{1}, E_{y j}[p]\right)=0, p \neq 0 \text { (b) } \chi\left(G_{1}, E_{y j}\right)>0
$$

(1) G_{1} is a locally free sheaf on X.
(2) $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes G_{1}\right)=0$.
(3) For $E \in \operatorname{Coh}(X), E \in T$ if and only if $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0$, and $E \in S$ if and only if $\pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0$.
(4) G_{1} is a local projective generator of \mathcal{C}_{G}.

Proof. (1) The claim follows from Lemma 1.1 .20 and (a). (2) It is sufficient to prove that $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes\right.$ $\left.G_{1 \mid \pi^{-1}(y)}\right)=0$ for all $y \in Y_{\pi}$. By Lemma1.1.17, $G_{1} \in T$. Since $\operatorname{Supp}\left(G_{1 \mid \pi^{-1}(y)}\right)=\pi^{-1}(y)$ and $G_{1 \mid \pi^{-1}(y)} \in T$, Lemma 1.1.15 (1) implies that $G_{1 \mid \pi^{-1}(y)} \in T$ is a successive extension of quotients of $E_{y j} \in T$. Hence it is sufficient to prove $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes Q\right)=0$ for all quotients Q of $E_{y j} \in T$. By our assumption on G_{1}, we have $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E_{y j}\right)=0$ for $E_{y j} \in T$. Therefore the claim holds.
(3) We set

$$
\begin{align*}
T_{1} & :=\left\{E \in \operatorname{Coh}(X) \mid R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0\right\} \\
S_{1} & :=\left\{E \in \operatorname{Coh}(X) \mid \pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0\right\} \tag{1.38}
\end{align*}
$$

By Lemma 1.1.21 (2), we get

$$
\begin{equation*}
T_{1} \cap S_{1} \subset T \cap S_{1}=\left\{E \in T \mid \pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0\right\} \tag{1.39}
\end{equation*}
$$

If $T \cap S_{1}=0$, then Lemma 1.1.5 (1) implies that G_{1} is a local projective generator of $\mathcal{C}_{G_{1}}$. Since $G_{1} \in T$ by (2), Lemma 1.1.5 (3) also implies that $\mathcal{C}=\mathcal{C}_{G_{1}}$. Therefore we shall prove that $T \cap S_{1}=0$. Assume that $E \in T$ satisfies $\pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0$. We first prove that $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0$. By Lemma 1.1.16] it is sufficient to prove $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes E_{\mid \pi^{-1}(y)}\right)=0$ for all $y \in Y$. This follows from Lemma 1.1.21 (3). Hence $\mathbf{R} \pi_{*}\left(G_{1}^{\vee} \otimes E\right)=0$. Then we see that $\mathbf{R} \pi_{*}\left(G_{1}^{\vee} \otimes E_{\mid \pi^{-1}(y)}\right)=0$ for all $y \in Y$ by the proof of Lemma1.1.10. Since $E_{\mid \pi^{-1}(y)} \in T$, Lemma 1.1.21 (3) implies that $E_{\mid \pi^{-1}(y)}=0$ for all $y \in Y$. Therefore $E=0$.
(4) This is a consequence of (3) and Lemma 1.1.5 (2).

Remark 1.1.23. If G_{1} in Proposition 1.1.22 satisfies (1.37) (a) only, then the proofs of Lemma 1.1.21 and Proposition 1.1 .22 imply that G_{1} is a locally free sheaf such that $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes G_{1}\right)=0$ and $\mathbf{R} \pi_{*}\left(G_{1}^{\vee} \otimes F\right) \in$ $\operatorname{Coh}(Y)$ for $F \in \mathcal{C}_{G}$.

Lemma 1.1.24. Let (S, T) be a torsion pair of $\operatorname{Coh}(X)$ and \mathcal{C} its tilting. Assume that one of the following holds.
(i) \mathcal{C} is the category of perverse coherent sheaves.
(ii) $\# Y_{\pi}<\infty, \mathcal{C}_{y}$ is Artinian and $\pi(\operatorname{Supp}(E)) \subset Y_{\pi}$ for $E \in S$.

Let G_{1} be a locally free sheaf of rank r on X such that

$$
\begin{equation*}
\chi\left(G_{1}, E_{y j}\right)>0 \tag{1.40}
\end{equation*}
$$

Then $\operatorname{Hom}\left(G_{1}, E_{y j}[k]\right)=0, k \neq 0$ if and only if $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes G_{1}\right)=0$.
Proof. Assume that $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes G_{1}\right)=0$. We first prove that $G_{1} \in T$. Assume that $G_{1} \notin T$. Then there is a surjective homomorphism $G_{1} \rightarrow E$ in $\operatorname{Coh}(X)$ such that $E \in S$. If \mathcal{C} has a local projective generator G, then $\pi_{*}\left(G^{\vee} \otimes E\right)=0$. By Lemma 1.1.10, we have $R^{1} \pi_{*}\left(G^{\vee} \otimes E_{\mid \pi^{-1}(y)}\right) \neq 0$ for a point $y \in Y$. Hence we may assume that $\operatorname{Supp}(E) \subset \pi^{-1}(y)$. In the second case, since $\# Y_{\pi}<\infty$, we may also assume that $\operatorname{Supp}(E) \subset \pi^{-1}(y)$. Then $E[1]$ is generated by $E_{y j}, 0 \leq j \leq s_{y}$. By our assumption, $\chi\left(G_{1}, E[1]\right)>0$. Hence $\operatorname{Ext}^{1}\left(G_{1}, E\right) \neq 0$, which implies that $R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes G_{1}\right) \neq 0$. Therefore $G_{1} \in T$. For $E_{y j} \in T$, we consider the homomorphism $\phi: \pi^{*}\left(\pi_{*}\left(G_{1}^{\vee} \otimes E_{y j}\right)\right) \otimes G_{1} \rightarrow E_{y j}$. Since $E_{y j}$ is an irreducible object, ϕ is surjective in \mathcal{C}_{G}, which implies that ϕ is surjective in $\operatorname{Coh}(X)$. Hence $\operatorname{Ext}^{1}\left(G_{1}, E_{y j}\right)=0$. For $E_{y j} \in S[1], \operatorname{dim} \pi^{-1}(y) \leq 1$ and the locally freeness of G_{1} imply that $\operatorname{Ext}^{1}\left(G_{1}, E_{y j}\right)=0$. Since $G_{1} \in T$, we also get $\operatorname{Hom}\left(G_{1}, E_{y j}[-1]\right)=0$ for all irreducible objects of \mathcal{C}.

Lemma 1.1.25. Let G be a locally free sheaf on X such that $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0$. Let E be a 1-dimensional sheaf on a fiber of π such that $\chi(G, E)=0$. Then $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right)=0$ if and only if E is a G-twisted semi-stable sheaf with respect to an ample divisor L on X.

Proof. By the proof of Lemma 1.1.5(1), we can take a decomposition

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow E \rightarrow E_{2} \rightarrow 0 \tag{1.41}
\end{equation*}
$$

such that $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E_{1}\right)=\pi_{*}\left(G^{\vee} \otimes E\right)$ and $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E_{2}\right)=R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)[-1]$. Then $\chi\left(G, E_{1}\right) \geq 0 \geq$ $\chi\left(G, E_{2}\right)$. Hence if E is G-twisted semi-stable, then $\pi_{*}\left(G^{\vee} \otimes E_{1}\right)=\pi_{*}\left(G^{\vee} \otimes E\right)=0$, which also implies that $R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)=0$. Conversely if $\pi_{*}\left(G^{\vee} \otimes E\right)=R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)=0$, then $\pi_{*}\left(G^{\vee} \otimes E^{\prime}\right)=0$ for any subsheaf E^{\prime} of E. Hence E is G-twisted semi-stable.

Corollary 1.1.26. Assume that $\pi: X \rightarrow Y$ is the minimal resolution of a rational double point. Let H be the pull-back of an ample divisor on Y. Then a locally free sheaf G on X is a tilting generator of the categery \mathcal{C}_{G} in Lemma 1.1.5 if and only if
(i) $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0$ and
(ii) there is no G-twisted stable sheaf E such that rk $E=0, \chi\left(G^{\vee} \otimes E\right)=0,\left(c_{1}(E), H\right)=0$ and $\left(c_{1}(E)^{2}\right)=-2$.
Moreover (ii) is equivalent to rk $G X\left(c_{1}(G), D\right)$ for D with $(D, H)=0$ and $\left(D^{2}\right)=-2$.
Proof. Let E be a 1-dimensional G-twisted stable sheaf on X. Then E is a sheaf on the exceptional locus if and only if $\left(c_{1}(E), H\right)=0$. Under this assumption, we have $\chi(E, E)=-\left(c_{1}(E)^{2}\right)>0$. Hence $\left(c_{1}(E)^{2}\right)=-2$. By Lemma 1.1.25 we get the first part of our claim. Since $\chi(G, E)=-\left(c_{1}(G), c_{1}(E)\right)+\operatorname{rk} G \chi(E)$, we also get the second claim by [Y6, Prop. 4.6].
1.2. Examples of perverse coherent sheaves. Let $\pi: X \rightarrow Y$ be a birational map in subsection 1.1 with Assumption 1.1.4 Let G be a locally free sheaf on X such that $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0$. We set $\mathcal{A}:=\pi_{*}\left(G^{\vee} \otimes G\right)$ as before. Let F be a coherent \mathcal{A}-module on Y. Then $\mathbf{R} \pi_{*}\left(\left(\pi^{-1}(F){\stackrel{\mathrm{L}}{\otimes^{-1}(\mathcal{A})}} G\right) \otimes G^{\vee}\right) \cong F$ as an \mathcal{A}-module. By using the spectral sequence, we see that

$$
\begin{equation*}
R^{p} \pi_{*}\left(G^{\vee} \otimes H^{q}\left(\pi^{-1}(F){\stackrel{\mathrm{L}}{\pi^{-1}(\mathcal{A})}} G\right)\right)=0, p+q \neq 0 \tag{1.42}
\end{equation*}
$$

and we have an exact sequence

$$
\begin{equation*}
0 \rightarrow R^{1} \pi_{*}\left(G^{\vee} \otimes H^{-1}\left(\pi^{-1}(F) \stackrel{\mathbf{L}}{\otimes_{\pi^{-1}(\mathcal{A})}} G\right)\right) \rightarrow F \xrightarrow{\stackrel{\lambda}{\rightarrow}} \pi_{*}\left(G^{\vee} \otimes H^{0}\left(\pi^{-1}(F) \stackrel{\stackrel{\mathbf{L}}{\otimes_{\pi^{-1}(\mathcal{A})}}}{ } G\right)\right) \rightarrow 0 \tag{1.43}
\end{equation*}
$$

We set

$$
\begin{equation*}
\pi^{-1}(F) \otimes_{\pi^{-1}(\mathcal{A})} G:=H^{0}\left(\pi^{-1}(E){\stackrel{\mathrm{L}}{\mathbb{\pi}^{-1}(\mathcal{A})}} G\right) \in \operatorname{Coh}(X) \tag{1.44}
\end{equation*}
$$

We set

$$
\begin{align*}
S_{0} & :=\left\{E \in \operatorname{Coh}(X) \mid \mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right)=0\right\} \\
S & :=\left\{E \in \operatorname{Coh}(X) \mid \pi_{*}\left(G^{\vee} \otimes E\right)=0\right\} \tag{1.45}\\
T & :=\left\{E \in \operatorname{Coh}(X) \mid R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)=0, \operatorname{Hom}(E, c)=0, c \in S_{0}\right\}
\end{align*}
$$

Lemma 1.2.1. For $E \in \operatorname{Coh}(X)$, let $\phi: \pi^{-1}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right) \otimes_{\pi^{-1}(\mathcal{A})} G \rightarrow E$ be the evaluation map.
(1) $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes \operatorname{ker} \phi\right)=0, \pi_{*}\left(G^{\vee} \otimes \operatorname{coker} \phi\right)=0$ and $R^{1} \pi_{*}\left(G^{\vee} \otimes E\right) \cong R^{1} \pi_{*}\left(G^{\vee} \otimes \operatorname{coker} \phi\right)$.
(2) (S, T) is a torsion pair of $\operatorname{Coh}(X)$ and the decomposition of E is given by

$$
\begin{equation*}
0 \rightarrow \operatorname{im} \phi \rightarrow E \rightarrow \operatorname{coker} \phi \rightarrow 0 \tag{1.46}
\end{equation*}
$$

$\operatorname{im} \phi \in T$, coker $\phi \in S$.
Proof. (1) We have a homomorphism

$$
\begin{equation*}
\pi_{*}\left(G^{\vee} \otimes E\right) \xrightarrow{\lambda} \pi_{*}\left(G^{\vee} \otimes \pi^{-1}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right) \otimes_{\pi^{-1}(\mathcal{A})} G\right) \xrightarrow{\pi_{*}\left(1_{G} \vee \otimes \phi\right)} \pi_{*}\left(G^{\vee} \otimes E\right) \tag{1.47}
\end{equation*}
$$

which is the identity. Then λ and $\pi_{*}\left(1_{G^{\vee}} \otimes \phi\right)$ are isomorphic. Hence we get im $\pi_{*}\left(1_{G \vee} \otimes \phi\right)=\pi_{*}\left(G^{\vee} \otimes \operatorname{im} \phi\right)=$ $\pi_{*}\left(G^{\vee} \otimes E\right)$. Since $R^{1} \pi_{*}\left(G^{\vee} \otimes \pi^{-1}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right) \otimes_{\pi^{-1}(\mathcal{A})} G\right)=0$, we get $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes \operatorname{ker} \phi\right)=0$. Since $R^{1} \pi_{*}\left(G^{\vee} \otimes \operatorname{im} \phi\right)=0$, we also get the remaining claims.
(2) We shall prove that $\operatorname{im} \phi \in T$. If $\operatorname{im} \phi \notin T$, then there is a homomorphism $\psi: \operatorname{im} \phi \rightarrow F$ such that $F \in S$. Replacing F by $\operatorname{im} \psi$, we may assume that ψ is surjective. Since $\psi \circ \phi$ is surjective, $\operatorname{Hom}(G, F) \neq 0$, which is a contradiction. Therefore $\operatorname{im} \phi \in T$. Obviously we have $S \cap T=\{0\}$. Therefore (S, T) is a torsion pair.

Let $\mathcal{C}(G)$ be the tilting of $\operatorname{Coh}(X)$. Then $\mathcal{C}(G)$ is the category of perverse coherent sheaves in the sense of Definition 1.1.1 Indeed we have the following.

Lemma 1.2.2. (cf. $\overline{\mathrm{VB}}$, Prop. 3.2.5]) Let G be a locally free sheaf on X such that $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0$. Let $\mathcal{C}(G)$ be the associated category. Then there is a local projective generator of $\mathcal{C}(G)$.
Proof. Let L be a line bundle on X such that $G^{\vee} \otimes L$ is generated by global sections and $\operatorname{det}\left(G^{\vee} \otimes L\right)$ is ample. We take a locally free resolution $0 \rightarrow L_{-1} \rightarrow L_{0} \rightarrow L \rightarrow 0$ such that $R^{1} \pi_{*}\left(L_{0}^{\vee} \otimes G\right)=0$. Then

$$
\begin{equation*}
\mathbf{R} \pi_{*}\left(L^{\vee} \otimes G\right)[1]=\operatorname{Cone}\left(\pi_{*}\left(L_{0}^{\vee} \otimes G\right) \rightarrow \pi_{*}\left(L_{-1}^{\vee} \otimes G\right)\right) \tag{1.48}
\end{equation*}
$$

We take a surjective homomorphism $V \rightarrow \pi_{*}\left(L_{-1}^{\vee} \otimes G\right)$ from a locally free sheaf V on Y. Then we have a morphism $\pi^{*}(V) \otimes L \rightarrow \mathbf{L} \pi^{*}\left(\mathbf{R} \pi_{*}\left(L^{\vee} \otimes G\right)\right)[1] \otimes L \rightarrow G[1]$, which induces a surjective homomorphism $V \rightarrow R^{1} \pi_{*}\left(L^{\vee} \otimes G\right)$. Hence we have a morphism

$$
\begin{equation*}
L \rightarrow G[1] \otimes \pi^{*}(V)^{\vee} \tag{1.49}
\end{equation*}
$$

such that the induced homomorphism

$$
\begin{equation*}
V \rightarrow \pi_{*}(\mathcal{H o m}(G[1], G[1])) \otimes V \rightarrow R^{1} \pi_{*}\left(L^{\vee} \otimes G\right) \tag{1.50}
\end{equation*}
$$

is surjective. We set $E:=\operatorname{Cone}\left(L \rightarrow G[1] \otimes \pi^{*}(V)^{\vee}\right)[-1]$. Then E is a locally free sheaf on X and $\phi: \pi^{*}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right) \otimes G \rightarrow E$ is surjective by our choice of L. By (1.50) and our assumption, we have $R^{1} \pi_{*}\left(E^{\vee} \otimes G\right)=0$. For $F \in T$, we consider the evaluation map $\varphi: \pi^{*}\left(\pi_{*}\left(G^{\vee} \otimes F\right)\right) \otimes G \rightarrow F$. The proof of Lemma 1.1.5 (1) implies that coker $\varphi \in S_{0}$. By the definition of T, $\operatorname{coker} \varphi=0$. Thus φ is surjective. Hence $R^{1} \pi_{*}\left(E^{\vee} \otimes F\right)=0$ for $F \in T$.

For $F \in S$, the surjectivity of ϕ implies that $\pi_{*}\left(E^{\vee} \otimes F\right)=0$. If $F \notin S_{0}$, then $R^{1} \pi_{*}\left(G^{\vee} \otimes F\right) \neq 0$, which implies that $R^{1} \pi_{*}\left(E^{\vee} \otimes F\right) \neq 0$. Assume that $F \in S_{0}$. Then since $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes F\right)=0$ for $F \in S_{0}$, we have $R^{1} \pi_{*}\left(E^{\vee} \otimes F\right) \cong R^{1} \pi_{*}\left(L^{\vee} \otimes F\right)$. Assume that $R^{1} \pi_{*}\left(L^{\vee} \otimes F\right)=0$ and $F \neq 0$. Let W be an irreducible component of $\operatorname{Supp}(F)$. Then F contains a subsheaf F^{\prime} whose support is contained in W. If $W \rightarrow Y$ is generically finite, then $\pi_{*}\left(G^{\vee} \otimes F^{\prime}\right) \neq 0$, which is a contradiction. Therefore $\operatorname{dim} F^{\prime}=\operatorname{dim} \pi\left(F^{\prime}\right)+1$. For a point $y \in \pi_{*}\left(F^{\prime}\right)$, we can take a homomorphism $\psi: \mathcal{O}_{X}^{\oplus(\operatorname{rk} G)-1} \rightarrow G^{\vee} \otimes L$ such that $\psi_{\mid \pi^{-1}(y)}$ is injective for any point of $\pi^{-1}(y)$. Then coker ψ is a line bundle in a neighborhood of $\pi^{-1}(y)$. Since π is proper, there is an open neighborhood U of y such that $\operatorname{coker} \psi_{\pi^{-1}(U)}$ is a line bundle. Hence we have an exact sequence on $\pi^{-1}(U)$:

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\pi^{-1}(U)}^{\oplus(\mathrm{rk} G)} \rightarrow\left(G^{\vee} \otimes L\right)_{\mid \pi^{-1}(U)} \rightarrow C \rightarrow 0 \tag{1.51}
\end{equation*}
$$

where $C:=\operatorname{coker} \psi_{\pi^{-1}(U)} / \mathcal{O}_{\pi^{-1}(U)}$. We may assume that $\operatorname{Supp}(C)_{\mid \pi^{-1}(y)}$ is a finite set. Then $\operatorname{Supp}\left(F^{\prime} \otimes C\right) \rightarrow$ Y is generically finite. Hence $\pi_{*}\left(F^{\prime} \otimes C \otimes L^{\vee}\right) \neq 0$, which implies that $\pi_{*}\left(F \otimes C \otimes L^{\vee}\right) \neq 0$. On the other hand, our assumptions impliy that $\mathbf{R} \pi_{*}\left(F \stackrel{\mathbf{L}}{\otimes} C \otimes L^{\vee}\right)=0$. Since the spectral spectral sequence

$$
\begin{equation*}
E_{2}^{p q}=R^{p} \pi_{*}\left(H^{q}\left(F \stackrel{\mathbf{L}}{\otimes} C \otimes L^{\vee}\right)\right) \Rightarrow E_{\infty}^{p+q}=H^{p+q}\left(\mathbf{R} \pi_{*}\left(F \stackrel{\mathbf{L}}{\otimes} C \otimes L^{\vee}\right)\right) \tag{1.52}
\end{equation*}
$$

degenerates, we have $\pi_{*}\left(F \otimes C \otimes L^{\vee}\right)=0$, which is a contradiction. Hence $R^{1} \pi_{*}\left(L^{\vee} \otimes F\right) \neq 0$ for all non-zero $F \in S_{0}$. Then $G_{1}:=G \oplus E$ satisfies

$$
\begin{array}{ll}
\pi_{*}\left(G_{1}^{\vee} \otimes F\right) \neq 0, \quad R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes F\right)=0, & 0 \neq F \in T \\
\pi_{*}\left(G_{1}^{\vee} \otimes F\right)=0, \quad R^{1} \pi_{*}\left(G_{1}^{\vee} \otimes F\right) \neq 0, & 0 \neq F \in S \tag{1.53}
\end{array}
$$

Therefore G_{1} is a local projective generator of $\mathcal{C}(G)$.

We set

$$
\begin{align*}
& S^{*}:=\left\{E \in \operatorname{Coh}(X) \mid \pi_{*}\left(G^{\vee} \otimes E\right)=0, \operatorname{Hom}(c, E)=0, c \in S_{0}\right\}, \\
& T^{*}:=\left\{E \in \operatorname{Coh}(X) \mid R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)=0\right\} . \tag{1.54}
\end{align*}
$$

Lemma 1.2.3. $\left(S^{*}, T^{*}\right)$ is a torsion pair of $\operatorname{Coh}(X)$ and the tilted category $\mathcal{C}(G)^{*}$ has a local projective generator.

Proof. We set

$$
\begin{align*}
& S_{0}^{\prime}:=\left\{E \in \operatorname{Coh}(X) \mid \mathbf{R} \pi_{*}(G \otimes E)=0\right\} \\
& S_{1}:=\left\{E \in \operatorname{Coh}(X) \mid \pi_{*}(G \otimes E)=0\right\} \tag{1.55}\\
& T_{1}:=\left\{E \in \operatorname{Coh}(X) \mid R^{1} \pi_{*}(G \otimes E)=0, \operatorname{Hom}(E, c)=0, c \in S_{0}^{\prime}\right\}
\end{align*}
$$

Then $\left(S_{1}, T_{1}\right)$ is a torsion pair of $\operatorname{Coh}(X)$ and Lemma 1.2 .2 implies that the tilted category $\mathcal{C}\left(G^{\vee}\right)$ has a local projective generator $G^{\vee} \oplus E_{1}$, where E_{1} is a locally free sheaf on X such that $\phi: \pi^{*}\left(\pi_{*}\left(G \otimes E_{1}\right)\right) \otimes G^{\vee} \rightarrow E_{1}$ is surjective and $R^{1} \pi_{*}\left(G^{\vee} \otimes E_{1}^{\vee}\right)=0$. By Lemma 1.1.8. $\left(S_{1}^{D}, T_{1}^{D}\right)$ is a torsion pair of $\operatorname{Coh}(X)$. We prove that $\mathcal{C}(G)^{*}=\mathcal{C}\left(G^{\vee}\right)^{D}$ by showing $\left(S_{1}^{D}, T_{1}^{D}\right)=\left(S^{*}, T^{*}\right)$. By the surjectivity of ϕ, we have

$$
\begin{equation*}
T_{1}^{D}=\left\{E \in \operatorname{Coh}(X) \mid R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)=R^{1} \pi_{*}\left(E_{1} \otimes E\right)=0\right\}=T^{*} \tag{1.56}
\end{equation*}
$$

For a coherent sheaf E with $\pi_{*}\left(G^{\vee} \otimes E\right)=0$, we consider $\psi: \pi^{*}\left(\pi_{*}\left(E_{1} \otimes E\right)\right) \otimes E_{1}^{\vee} \rightarrow E$. Then im $\psi \in T_{1}^{D}=$ T^{*} and coker $\psi \in S_{1}^{D}$. Since $\pi_{*}\left(G^{\vee} \otimes \operatorname{im} \psi\right)=0, \operatorname{im} \psi \in S_{0}$. Therefore if $E \in S^{*}$, then $\operatorname{im} \psi=0$, which means that $E \in S_{1}^{D}$. Conversely if $E \in S_{1}^{D}$, then $S_{0} \subset T_{1}^{D}$ implies that $E \in S^{*}$. Therefore $\left(S_{1}^{D}, T_{1}^{D}\right)=\left(S^{*}, T^{*}\right)$.

Let $E_{y j}, y \in Y_{\pi}$ be the irreducible objects of \mathcal{C} in Lemma 1.1.13 (3).
Lemma 1.2.4. We set $S_{0 y}:=\left\{E \in S_{0} \mid \pi(\operatorname{Supp}(E))=\{y\}\right\}$. Then $S_{0 y}[1]$ is generated by $\left\{E_{y j} \mid E_{y j} \in S_{0}[1]\right\}$.
Proof. For an exact sequence

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow E \rightarrow E_{2} \rightarrow 0 \tag{1.57}
\end{equation*}
$$

in \mathcal{C}, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathbf{R} \pi_{*}\left(G^{\vee} \otimes E_{1}\right) \rightarrow \mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right) \rightarrow \mathbf{R} \pi_{*}\left(G^{\vee} \otimes E_{2}\right) \rightarrow 0 \tag{1.58}
\end{equation*}
$$

in $\operatorname{Coh}(Y)$. If $E \in S_{0}[1]$, then $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E_{1}\right)=\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E_{2}\right)=0$. Then $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes H^{-1}\left(E_{1}\right)\right)=$ $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes H^{-1}\left(E_{2}\right)\right)=0$ and $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes H^{0}\left(E_{1}\right)\right)=\mathbf{R} \pi_{*}\left(G^{\vee} \otimes H^{0}\left(E_{2}\right)\right)=0$. By the definition of T, $H^{0}\left(E_{1}\right)=H^{0}\left(E_{2}\right)=0$. Hence $E_{1}, E_{2} \in S_{0}[1]$. Therefore the claim holds.

By the construction of $\mathcal{C}(G)$ and $\mathcal{C}(G)^{*}$, we have the following.
Proposition 1.2.5. We set $\mathcal{A}_{0}:=\pi_{*}\left(G^{\vee} \otimes G\right)$. Then we have morphisms

$$
\begin{array}{ccc}
\mathcal{C}(G) & \rightarrow & \operatorname{Coh}_{\mathcal{A}_{0}}(Y) \\
E & \mapsto & \mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right) \tag{1.59}
\end{array}
$$

and

$$
\begin{array}{ccc}
\mathcal{C}(G)^{*} & \rightarrow & \operatorname{Coh}_{\mathcal{A}_{0}}(Y) \\
E & \mapsto & \mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right) . \tag{1.60}
\end{array}
$$

Let $\tau^{\geq-1}: \mathbf{D}(X) \rightarrow \mathbf{D}(X)$ be the trancation morphism such that $H^{p}\left(\tau^{\geq-1}(E)\right)=0$ for $p<-1$ and $H^{p}\left(\tau^{\geq-1}(E)\right)=H^{p}(E)$ for $p \geq-1$. By (1.42), we have

$$
\begin{align*}
& H^{q}\left(\pi^{-1}(F){\stackrel{\mathrm{L}}{\pi^{-1}(\mathcal{A})}} G\right) \in S_{0}, q \neq-1,0, \tag{1.61}\\
& \Sigma(F):=\tau^{\geq-1}\left(\pi^{-1}(F){\stackrel{\mathrm{L}}{\otimes^{-1}(\mathcal{A})}} G\right) \in \mathcal{C}(G) .
\end{align*}
$$

Thus we have a morphism $\Sigma: \operatorname{Coh}_{\mathcal{A}_{0}}(Y) \rightarrow \mathcal{C}(G)$ such that $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes \Sigma(F)\right)=F$ for $F \in \operatorname{Coh}_{\mathcal{A}_{0}}(Y)$.
1.2.1. ${ }^{p} \operatorname{Per}(X / Y), p=-1,0$ and their generalizations. If $S_{0}=\{0\}$, then G is a local projective generator of $\mathcal{C}(G)$. We give examples such that $S_{0} \neq\{0\}$. For $y \in Y_{\pi}$, we set $Z_{y}:=\pi^{-1}(y)$ and $C_{y j}, j=1, \ldots, s_{y}$ the irreducible components of Z_{y}. Assume that $\mathbf{R} \pi_{*}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{Y}$. Then S_{0} for \mathcal{O}_{X} contains $\mathcal{O}_{C_{y j}}(-1)$, $y \in Y_{\pi}$. In this case, $\mathcal{C}\left(\mathcal{O}_{X}\right)$ is nothing but the category ${ }^{-1} \operatorname{Per}(X / Y)$ defined by Bridgeland. We also have $\mathcal{C}\left(\mathcal{O}_{X}\right)^{*}=\mathcal{C}\left(\mathcal{O}_{X}^{\vee}\right)^{D}={ }^{0} \operatorname{Per}(X / Y)$. We shall study S_{0} containing line bundles on $C_{y j}, y \in Y_{\pi}$. For this purpose, we first prepare some properties of S_{0} for \mathcal{O}_{X}.

Lemma 1.2.6. (1) Let E be a stable 1-dimensional sheaf such that $\operatorname{Supp}(E) \subset Z_{y}$ and $\chi(E)=1$. Then there is a curve $D \subset Z_{y}$ and $E \cong \mathcal{O}_{D}$. Conversely if \mathcal{O}_{D} is purely 1-dimensional, $\chi\left(\mathcal{O}_{D}\right)=1$ and $\pi(D)=\{y\}$, then \mathcal{O}_{D} is stable. In particular, D is a subscheme of Z_{y}.
(2) $\mathcal{O}_{Z_{y}}$ is stable.

Proof. (1) Since $\chi(E)=1, \pi_{*}(E) \neq 0$. Since $\pi_{*}(E)$ is 0-dimensional, we have a homomorphism $\mathbb{C}_{y} \rightarrow \pi_{*}(E)$. Then we have a homomorphism $\phi: \mathcal{O}_{Z_{y}}=\pi^{*}\left(\mathbb{C}_{y}\right) \rightarrow E$. We denote the image by \mathcal{O}_{D}. Since $R^{1} \pi_{*}\left(\mathcal{O}_{X}\right)=0$, we have $H^{1}\left(X, \mathcal{O}_{D}\right)=0$. Hence $\chi\left(\mathcal{O}_{D}\right) \geq 1$. Since E is stable, ϕ must be surjective.

Conversely we assume that \mathcal{O}_{D} satisfies $\chi\left(\mathcal{O}_{D}\right)=1$. For a quotient $\mathcal{O}_{D} \rightarrow \mathcal{O}_{C}, H^{1}\left(X, \mathcal{O}_{C}\right)=0$ implies that $\chi\left(\mathcal{O}_{C}\right) \geq 1$, which implies that \mathcal{O}_{D} is stable.
(2) By $\mathcal{O}_{Z_{y}}=\pi^{*}\left(\mathbb{C}_{y}\right)$ and the surjectivity of $\mathbb{C}_{y} \rightarrow \pi_{*}\left(\pi^{*}\left(\mathbb{C}_{y}\right)\right)$, we get $\chi\left(\mathcal{O}_{Z_{y}}\right)=1$. Hence $\mathcal{O}_{Z_{y}}$ is stable.

Lemma 1.2.7. (1) Let E be a stable purely 1-dimension sheaf such that $\pi(\operatorname{Supp}(E))=\{y\}$ and $\chi(E)=$ 0. Then $E \cong \mathcal{O}_{C_{y j}}(-1)$.
(2) Let E be a 1-dimensional sheaf such that $\mathbf{R} \pi_{*}(E)=0$. Then E is a semi-stable 1 -dimensional sheaf with $\chi(E)=0$. In particular, E is a successive extension of $\mathcal{O}_{C_{y j}}(-1), y \in Y, 1 \leq j \leq s_{y}$.
Proof. (1) We set $n:=\operatorname{dim} X$. We take a point $x \in \operatorname{Supp}(E)$. Then $\mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(\mathbb{C}_{x}, E\right)=\mathbb{C}_{x} \stackrel{\mathbf{L}}{\otimes} E[-n+1]$. Since E is purely 1-dimensional, depth $\mathcal{O}_{X, x} E_{x}=1$. Hence the projective dimension of E at x is $n-1$. Then \mathcal{T} or $_{n-1}^{\mathcal{O}_{X}}\left(\mathbb{C}_{x}, E\right)=H^{0}\left(\mathbb{C}_{x} \stackrel{\mathrm{~L}}{\otimes} E[-n+1]\right) \neq 0$. Since $\operatorname{Ext}^{1}\left(\mathbb{C}_{x}, E\right)=H^{0}\left(X, \mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(\mathbb{C}_{x}, E\right)\right) \neq 0$, we can take a non-trivial extension

$$
\begin{equation*}
0 \rightarrow E \rightarrow F \rightarrow \mathbb{C}_{x} \rightarrow 0 \tag{1.62}
\end{equation*}
$$

If F is not semi-stable, then since $\chi(F)=1$, there is a quotient $F \rightarrow F^{\prime}$ of F such that F^{\prime} is a stable sheaf with $\chi\left(F^{\prime}\right) \leq 0$. Then $E \rightarrow F^{\prime}$ is an isomorphism, which is a contradiction. By Lemma 1.2.6 $F=\mathcal{O}_{D}$. We take an integral curve $C \subset D$ containing x. Since $\mathcal{O}_{D} \rightarrow \mathbb{C}_{x}$ factor through \mathcal{O}_{C}, we have a surjective homomorphism $E \rightarrow \mathcal{O}_{C}(-1)$. By the stability of $E, E \cong \mathcal{O}_{C}(-1)$.
(2) Let F be a subsheaf of E. Then we have $\pi_{*}(F)=0$, which implies that $\chi(F) \leq 0$. Therefore E is semi-stable.

We shall slightly generalize ${ }^{-1} \operatorname{Per}(X / Y)$. Let G be a locally free sheaf on X.
Assumption 1.2.8. Assume that $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0$ and there are line bundles $\mathcal{O}_{C_{y j}}\left(b_{y j}\right)$ on $C_{y j}$ such that $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes \mathcal{O}_{C_{y j}}\left(b_{y j}\right)\right)=0$.
Lemma 1.2.9. (1) Let E be a locally free sheaf of rank r on X such that $E_{\mid C_{y j}} \cong \mathcal{O}_{C_{y j}}^{\oplus r}$. Then E is the pull-back of a locally free sheaf on Y.
(2) $G^{\vee} \otimes G \cong \pi^{*}\left(\pi_{*}\left(G^{\vee} \otimes G\right)\right)$.

Proof. (1) We consider the map $\phi: H^{0}\left(E_{\mid Z_{y}}\right) \otimes \mathcal{O}_{Z_{y}} \rightarrow E_{\mid Z_{y}}$. For any point $x \in Z_{y}$, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow F_{x} \rightarrow \mathcal{O}_{Z_{y}} \rightarrow \mathbb{C}_{x} \rightarrow 0 \tag{1.63}
\end{equation*}
$$

such that $\mathbf{R} \pi_{*}\left(F_{x}\right)=0$. By Lemma 1.2 .7 (2) and our assumption, we have $\mathbf{R} \pi_{*}\left(E \otimes F_{x}\right)=0$. Hence $H^{0}\left(E_{\mid Z_{y}}\right) \rightarrow H^{0}\left(E_{\mid\{x\}}\right)$ is isomorphic and $H^{1}\left(E_{\mid Z_{y}}\right)=0$. Therefore ϕ is a surjective homomorphism of locally free sheaves of the same rank, which implies that ϕ is an isomorphism. By $R^{1} \pi_{*}(E)=0$ (Lem. 1.1.16 (3)) and the surjectivity of $\pi^{*}\left(\pi_{*}\left(I_{Z_{y}}\right)\right) \rightarrow I_{Z_{y}}, R^{1} \pi_{*}\left(E \otimes I_{Z_{y}}\right)=0$. Hence $\pi_{*}(E) \rightarrow \pi_{*}\left(E_{\mid Z_{y}}\right)$ is surjective. Then we can take a homomorphism $\mathcal{O}_{U}^{\oplus r} \rightarrow \pi_{*}(E)_{\mid U}$ in a neighborhood of y such that $\mathcal{O}_{U}^{\oplus r} \rightarrow \pi_{*}\left(E_{\mid Z_{y}}\right)$ is surjective. Then we have a homomorphism $\pi^{*}\left(\mathcal{O}_{U}^{\oplus r}\right) \rightarrow E_{\mid \pi^{-1}(U)}$ which is surjective on Z_{y}. Since π is proper, replacing U by a small neighborhood of y, we have an isomorphism $\pi^{*}\left(\mathcal{O}_{U}^{\oplus r}\right) \rightarrow E_{\mid \pi^{-1}(U)}$. Therefore E is the pull-back of a locally free sheaf on Y.
(2) Since $G^{\vee} \otimes \mathcal{O}_{C_{y j}}\left(b_{y j}\right)$ is a locally free sheaf on $C_{y j}$ with $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes \mathcal{O}_{C_{y j}}\left(b_{y j}\right)\right)=0$, we have $G^{\vee} \otimes$ $\mathcal{O}_{C_{y j}}\left(b_{y j}\right) \cong \mathcal{O}_{C_{y j}}(-1)^{\oplus \operatorname{rk} G}$. Hence $G_{\mid C_{y j}} \cong \mathcal{O}_{C_{y j}}(1)^{\oplus \mathrm{rk} G} \otimes \mathcal{O}_{C_{y j}}\left(b_{y j}\right)$. Hence $G^{\vee} \otimes G_{\mid C_{y j}} \cong \mathcal{O}_{C_{y j}}^{\oplus(\mathrm{rk} G)^{2}}$. By (1), we get the claim.

Lemma 1.2.10. For $E \in \operatorname{Coh}(X)$, we have

$$
\begin{equation*}
\pi^{-1}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right) \otimes_{\pi^{-1}(\mathcal{A})} G \otimes_{\mathcal{O}_{X}} G^{\vee} \cong \pi^{*} \pi_{*}\left(G^{\vee} \otimes E\right) \tag{1.64}
\end{equation*}
$$

Proof. By Lemma 1.2.9, we get

$$
\begin{align*}
\pi^{-1}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right) \otimes_{\pi^{-1}(\mathcal{A})} G \otimes_{\mathcal{O}_{X}} G^{\vee} & \cong \pi^{-1}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right) \otimes_{\pi^{-1}(\mathcal{A})} \pi^{-1}\left(\pi_{*}\left(G \otimes_{\mathcal{O}_{X}} G^{\vee}\right)\right) \otimes_{\pi^{-1}\left(\mathcal{O}_{Y}\right)} \mathcal{O}_{X} \tag{1.65}\\
& \cong \pi^{-1}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right) \otimes_{\pi^{-1}\left(\mathcal{O}_{Y}\right)} \mathcal{O}_{X} \\
& =\pi^{*}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right)
\end{align*}
$$

Therefore the claims hold.
Lemma 1.2.11. \mathcal{A}-module $\pi_{*}\left(G^{\vee} \otimes \mathbb{C}_{x}\right)$ does not depend on the choice of $x \in \pi^{-1}(y)$. We set

$$
\begin{equation*}
A_{y}:=\pi^{-1}\left(\pi_{*}\left(G^{\vee} \otimes \mathbb{C}_{x}\right)\right) \otimes_{\pi^{-1}(\mathcal{A})} G, x \in Z_{y} \tag{1.66}
\end{equation*}
$$

Proof. For the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{C_{y j}}\left(b_{y j}\right) \rightarrow \mathcal{O}_{C_{y j}}\left(b_{y j}+1\right) \rightarrow \mathbb{C}_{x} \rightarrow 0 \tag{1.67}
\end{equation*}
$$

we have $\pi_{*}\left(G^{\vee} \otimes \mathcal{O}_{C_{y j}}\left(b_{y j}+1\right)\right) \cong \pi_{*}\left(G^{\vee} \otimes \mathbb{C}_{x}\right)$. Hence $\pi_{*}\left(G^{\vee} \otimes \mathbb{C}_{x}\right)$ does not depens on the choice of $x \in Z_{y}$.

Lemma 1.2.12. (1) A_{y} is a unique line bundle on Z_{y} such that $A_{y \mid C_{y j}} \cong \mathcal{O}_{C_{y j}}\left(b_{y j}+1\right)$.
(2) $G^{\vee} \otimes A_{y} \cong \mathcal{O}_{Z_{y}}^{\oplus} \mathrm{rk} G$.

Proof. By Lemma 1.2.10 $G^{\vee} \otimes A_{y} \cong \pi^{*}\left(\pi_{*}\left(G^{\vee} \otimes \mathbb{C}_{x}\right)\right) \cong \mathcal{O}_{Z_{y}}^{\oplus} \mathrm{rk} G$. Thus (2) holds. Since $G_{\mid Z_{y}}$ is a locally free sheaf on Z_{y}, A_{y} is a line bundle on Z_{y}. Then $A_{y}^{\otimes \operatorname{rk} G} \cong \operatorname{det} G_{\mid Z_{y}}$. Since the restriction map $\operatorname{Pic}\left(Z_{y}\right) \rightarrow$ $\prod_{j} \operatorname{Pic}\left(C_{y j}\right)$ is bijective and $\operatorname{Pic}\left(C_{y j}\right) \cong \mathbb{Z}, G_{\mid C_{y j}} \cong \mathcal{O}_{C_{y j}}\left(b_{y j}+1\right)^{\oplus \text { rk } G}$ imply the claim (1).

Lemma 1.2.13. For a coherent sheaf E with $\operatorname{Supp}(E) \subset Z_{y}, \chi(G, E) \in \mathbb{Z}$ rk G.
Proof. We note that $K\left(Z_{y}\right)$ is generated by $\mathcal{O}_{C_{y j}}\left(b_{y j}\right)$ and \mathbb{C}_{x}. For E with $\operatorname{Supp}(E) \subset Z_{y}$, we have a filtration $0 \subset F_{1} \subset F_{2} \subset \cdots \subset F_{n}=E$ such that $F_{i} / F_{i-1} \in \operatorname{Coh}\left(Z_{y}\right)$. Hence the claim follows from $\chi\left(G, \mathcal{O}_{C_{y j}}\left(b_{y j}\right)\right)=0$ and $\chi\left(G, \mathbb{C}_{x}\right)=\operatorname{rk} G$.

Lemma 1.2.14. (1) Let E be a G-twisted stable 1-dimensional sheaf such that $\operatorname{Supp}(E) \subset Z_{y}$ and $\chi(G, E)=\operatorname{rk} G$. Then there is a subscheme C of Z_{y} such that $\chi\left(\mathcal{O}_{C}\right)=1$ and $E \cong A_{y} \otimes \mathcal{O}_{C}$. Conversely for a subscheme C of Z_{y} such that \mathcal{O}_{C} is 1-dimensional, $\chi\left(\mathcal{O}_{C}\right)=1, E=A_{y} \otimes \mathcal{O}_{C}$ is a G-twisted stable sheaf with $\chi(G, E)=\operatorname{rk} G$ and $\pi(\operatorname{Supp}(E))=\{y\}$.
(2) A_{y} is G-twisted stable.

Proof. (1) We choose an exact sequence

$$
\begin{equation*}
0 \rightarrow K \rightarrow E \rightarrow \mathbb{C}_{x} \rightarrow 0 \tag{1.68}
\end{equation*}
$$

Since E is a G-twisted stable 1-dimensional sheaf with $\chi(G, E)=\operatorname{rk} G, K$ is a G-twisted semi-stable sheaf with $\chi(G, K)=0$. If $\pi_{*}\left(G^{\vee} \otimes K\right) \neq 0$, then we have a non-zero homomorphism $\phi: \pi^{-1}\left(\pi_{*}\left(G^{\vee} \otimes K\right)\right) \otimes_{\pi^{-1}(\mathcal{A})}$ $G \rightarrow K$ such that $\pi_{*}\left(G^{\vee} \otimes \operatorname{im} \phi\right)=\pi_{*}\left(G^{\vee} \otimes K\right)$. Since $R^{1} \pi_{*}\left(G^{\vee} \otimes \operatorname{im} \phi\right)=0, \chi(G, \operatorname{im} \phi)>0$, which is a contradiction. Therefore $\pi_{*}\left(G^{\vee} \otimes K\right)=0$. Hence $\xi: \pi_{*}\left(G^{\vee} \otimes E\right) \rightarrow \pi_{*}\left(G^{\vee} \otimes \mathbb{C}_{x}\right)$ is injective. Since $\operatorname{dim} H^{0}\left(Y, \pi_{*}\left(G^{\vee} \otimes E\right)\right) \geq \chi(G, E)=\operatorname{rk} G, \xi$ is an isomorphism. Then we have a homomorphism $\psi: A_{y} \rightarrow E$. Since $\pi_{*}\left(G^{\vee} \otimes \operatorname{im} \psi\right)=\pi_{*}\left(G^{\vee} \otimes E\right)$ and $R^{1} \pi_{*}\left(G^{\vee} \otimes \operatorname{im} \psi\right)=0$, we get $\operatorname{im} \psi=E$. Since $E \otimes A_{y}^{D}$, $A_{y}^{D}:=\mathcal{H o m}\left(A_{y}, \mathcal{O}_{Z_{y}}\right)$ is a quotient of $\mathcal{O}_{Z_{y}}$, there is a subscheme C of Z_{y} such that $E \otimes A_{y}^{D} \cong \mathcal{O}_{C}$. Since $\chi(G, E)=\chi\left(G, A_{y} \otimes \mathcal{O}_{C}\right)=\chi\left(\mathcal{O}_{C}^{\oplus}{ }^{\mathrm{rk}}\right)$, we have $\chi\left(\mathcal{O}_{C}\right)=1$.

Conversely for $E \otimes A_{y}^{\vee} \cong \mathcal{O}_{C}$ such that \mathcal{O}_{C} is 1-dimensional, $C \subset Z_{y}$ and $\chi\left(\mathcal{O}_{C}\right)=1$, we consider a quotient $E \rightarrow F$. Then $F=A_{y} \otimes \mathcal{O}_{D}, D \subset C$. Since $R^{1} \pi_{*}\left(G^{\vee} \otimes F\right)=0$ and $G^{\vee} \otimes A_{y} \otimes \mathcal{O}_{D} \cong \mathcal{O}_{D}^{\oplus}{ }^{\text {rk } G}$, we get $\chi(G, F) \geq \operatorname{rk} G$. From this fact, we first see that E is purely 1-dimensional, and then we see that G-twisted stable.
(2) follows from (1) and $\chi\left(\mathcal{O}_{Z_{y}}\right)=1$.

Lemma 1.2.15. Let E be a G-twisted stable purely 1-dimension sheaf such that $\pi(\operatorname{Supp}(E))=\{y\}$ and $\chi(G, E)=0$. Then $E \cong A_{y} \otimes \mathcal{O}_{C_{y j}}(-1) \cong \mathcal{O}_{C_{y j}}\left(b_{y j}\right)$.
Proof. We set $n:=\operatorname{dim} X$. We take a point $x \in \operatorname{Supp}(E)$. Then $\mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(\mathbb{C}_{x}, E\right)=\mathbb{C}_{x} \stackrel{\mathrm{~L}}{\otimes} E[-n+1]$. Since E is purely 1-dimensional, $\operatorname{depth}_{\mathcal{O}_{X, x}} E_{x}=1$. Hence the projective dimension of E at x is $n-1$. Then
\mathcal{T} or $_{n-1}^{\mathcal{O}_{X}}\left(\mathbb{C}_{x}, E\right)=H^{0}\left(\mathbb{C}_{x} \stackrel{\mathrm{~L}}{\otimes} E[-n+1]\right) \neq 0$. Since $\operatorname{Ext}^{1}\left(\mathbb{C}_{x}, E\right)=H^{0}\left(X, \mathcal{E} x t_{\mathcal{O}_{X}}^{1}\left(\mathbb{C}_{x}, E\right)\right) \neq 0$, we can take a non-trivial extension

$$
\begin{equation*}
0 \rightarrow E \rightarrow F \rightarrow \mathbb{C}_{x} \rightarrow 0 \tag{1.69}
\end{equation*}
$$

If F is not G-twisted semi-stable, then since $\chi(G, F)=\operatorname{rk} G$, there is a quotient $F \rightarrow F^{\prime}$ of F such that F^{\prime} is a G-twisted stable sheaf with $\chi\left(G, F^{\prime}\right) \leq 0$. Then $E \rightarrow F^{\prime}$ is an isomorphism, which is a contradiction. By Lemma 1.2.14, F is a quotient of A_{y}. Thus we may write $F=A_{y} \otimes \mathcal{O}_{D}$, where D is a subscheme of Z_{y}. We take an integral curve $C \subset D$ containing x. Since $\mathcal{O}_{D} \rightarrow \mathbb{C}_{x}$ factor through \mathcal{O}_{C}, we have a surjective homomorphism $E \rightarrow A_{y} \otimes \mathcal{O}_{C}(-1)$. By the stability of $E, E \cong A_{y} \otimes \mathcal{O}_{C}(-1)$.
Lemma 1.2.16. Let E be a 1-dimensional sheaf such that $\chi(G, E)=0$ and $\pi(\operatorname{Supp}(E))=\{y\}$. Then the following conditions are equivalent.
(1) $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right)=0$.
(2) E is a G-twisted semi-stable 1-dimensional sheaf with $\pi(\operatorname{Supp}(E))=\{y\}$.
(3) E is a successive extension of $A_{y} \otimes \mathcal{O}_{C_{y j}}(-1), 1 \leq j \leq s_{y}$.

Proof. Lemma 1.1 .25 gives the equivalence of (1) and (2). The equivalence of (2) and (3) follows from Lemma 1.2.15

Lemma 1.2.17. Let E be a 1-dimensional sheaf such that $\pi_{*}(G, E)=0$. Then there is a homomorphism $E \rightarrow A_{y} \otimes \mathcal{O}_{C_{y j}}(-1)$. In particular, E is generated by subsheaves of $A_{y} \otimes \mathcal{O}_{C_{y j}}(-1), y \in Y, 1 \leq j \leq s_{y}$.
Proof. Since $\pi(\operatorname{Supp}(E))$ is 0-dimensional, we have a decomposition $E=\oplus_{i} E_{i}, \operatorname{Supp}\left(E_{i}\right) \cap \operatorname{Supp}\left(E_{j}\right)=\emptyset$, $i \neq j$. So we may assume that $\pi(\operatorname{Supp}(E))$ is a point. We note that $\chi(G, E) \leq 0$. If $\chi(G, E)=0$, then $\chi\left(R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)\right)=0$. Since $\operatorname{dim} E=1$ and $\pi_{*}\left(G^{\vee} \otimes E\right)=0$, we get $\operatorname{dim} \pi(\operatorname{Supp}(E))=0$. Then we have $R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)=0$. Hence the claim follows from Lemma 1.2.16. We assume that $\chi(G, E)<0$. Let

$$
\begin{equation*}
0 \subset F_{1} \subset F_{2} \subset \cdots \subset F_{s}=E \tag{1.70}
\end{equation*}
$$

be a filtration such that $E_{i}:=F_{i} / F_{i-1}, 1 \leq i \leq s$ are G-twisted stable and $\chi\left(G, E_{i}\right) /\left(c_{1}\left(E_{i}\right), L\right) \leq$ $\chi\left(G, E_{i-1}\right) /\left(c_{1}\left(E_{i-1}\right), L\right)$, where L is an ample divisor on X. Since $\pi_{*}\left(G^{\vee} \otimes E\right)=0$ for any G-twisted stable 1-dimensional sheaf E on a fiber with $\chi(G, E) \leq 0$, replacing E by a G-twisted stable sheaf E_{s}, we may assume that E is G-twisted stable. We take a non-trivial extension

$$
\begin{equation*}
0 \rightarrow E \rightarrow F \rightarrow \mathbb{C}_{x} \rightarrow 0 \tag{1.71}
\end{equation*}
$$

Then F is purely 1-dimensional and $\chi(G, F)=\chi(G, E)+\operatorname{rk} G \leq 0$ by Lemma 1.2.13. Assume that there is a quotient $F \rightarrow F^{\prime}$ of F such that F^{\prime} is a G-twisted stable sheaf with $\chi\left(G, F^{\prime}\right) /\left(c_{1}\left(F^{\prime}\right), L\right)<$ $\chi(G, F) /\left(c_{1}(F), L\right) \leq 0$. Then $\phi: E \rightarrow F^{\prime}$ is surjective over $X \backslash\{x\}$. Hence $\chi\left(G, F^{\prime}\right) /\left(c_{1}\left(F^{\prime}\right), L\right) \geq$ $\chi(G, \operatorname{im} \phi) /\left(c_{1}(\operatorname{im} \phi), L\right) \geq \chi(G, E) /\left(c_{1}(E), L\right)$. Since $\left(c_{1}\left(F^{\prime}\right), L\right) \leq\left(c_{1}(F), L\right)=\left(c_{1}(E), L\right)$, we get $\chi\left(G, F^{\prime}\right) \geq$ $\chi(G, E)\left(c_{1}\left(F^{\prime}\right), L\right) /\left(c_{1}(E), L\right) \geq \chi(G, E)$. If $\chi\left(G, F^{\prime}\right)=\chi(G, E)$, then ϕ is an isomorphism. Since the extension is non-trivial, this is a contradiction. Therefore F is G-twisted semi-stable or $\chi\left(G, F^{\prime}\right)>\chi(G, E)$. Thus we get a homomorphism $\psi: E \rightarrow E^{\prime}$ such that E^{\prime} is a stable sheaf with $\chi(G, E)<\chi\left(G, E^{\prime}\right)<0$ and ψ is surjective in codimension $n-1$. By the induction on $\chi(G, E)$, we get the claim.
Lemma 1.2.18. For a point $y \in Y_{\pi}$, let E be a 1-dimensional sheaf on X satisfying the following two conditions:
(i) $\operatorname{Hom}\left(E, A_{y} \otimes \mathcal{O}_{C_{y j}}(-1)\right)=\operatorname{Ext}^{1}\left(E, A_{y} \otimes \mathcal{O}_{C_{y j}}(-1)\right)=0$ for all j.
(ii) There is an exact sequence

$$
\begin{equation*}
0 \rightarrow F \rightarrow E \rightarrow \mathbb{C}_{x} \rightarrow 0 \tag{1.72}
\end{equation*}
$$

such that F is a G-twisted semi-stable 1-dimensional sheaf with $\pi(\operatorname{Supp}(F))=\{y\}, \chi(G, F)=0$ and $x \in Z_{y}$.
Then $E \cong A_{y}$. Conversely, $E:=A_{y}$ satisfies (i) and (ii).
Proof. We first prove that A_{y} satisfies (i) and (ii). For the exact sequence

$$
\begin{equation*}
0 \rightarrow F^{\prime} \rightarrow A_{y} \rightarrow \mathbb{C}_{x} \rightarrow 0 \tag{1.73}
\end{equation*}
$$

we have $\mathbf{R} \pi_{*}\left(G, F^{\prime}\right)=0$. Hence (ii) holds by Lemma1.2.16, (i) follows from Lemma 1.1.16, Conversely we assume that E satisfies (i) and (ii). By (ii), $\pi_{*}\left(G^{\vee} \otimes E\right) \cong \pi_{*}\left(G^{\vee} \otimes \mathbb{C}_{x}\right)$ and $R^{1} \pi_{*}\left(G^{\vee} \otimes E\right)=0$. By (i), Lemma 1.2.1 and Lemma 1.2.16, $\pi^{-1}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right) \otimes_{\pi^{-1}\left(\mathcal{O}_{Y}\right)} G \rightarrow E$ is surjective. Hence we have an exact sequence

$$
\begin{equation*}
0 \rightarrow F^{\prime} \rightarrow A_{y} \rightarrow E \rightarrow 0 \tag{1.74}
\end{equation*}
$$

where F^{\prime} is a G-twisted semi-stable 1-dimensional sheaf with $\chi\left(G, F^{\prime}\right)=0$. Since $\operatorname{Ext}^{1}\left(E, A_{y} \otimes \mathcal{O}_{C_{y j}}(-1)\right)=0$ for all $j, A_{y} \cong E \oplus F^{\prime}$, which implies that $A_{y} \cong E$.

We set

$$
E_{y j}:= \begin{cases}A_{y}, & j=0 \tag{1.75}\\ A_{y} \otimes \mathcal{O}_{C_{y j}}(-1)[1], & j>0\end{cases}
$$

Proposition 1.2.19. (VB)
(1) $E_{y j}, j=0, \ldots, s_{y}$ are irreducible objects of $\mathcal{C}(G)$.
(2) $\mathbb{C}_{x}, x \in \pi^{-1}(y)$ is generated by $E_{y j}$. In particular, irreducible objects of $\mathcal{C}(G)$ are

$$
\begin{equation*}
\mathbb{C}_{x},\left(x \in X \backslash \pi^{-1}\left(Y_{\pi}\right)\right), \quad E_{y j},\left(y \in Y_{\pi}, j=0,1, \ldots, s_{y}\right) \tag{1.76}
\end{equation*}
$$

Proof. (1) Assume that there is an exact sequence in $\mathcal{C}(G)$:

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow A_{y} \rightarrow E_{2} \rightarrow 0 \tag{1.77}
\end{equation*}
$$

Since $H^{-1}\left(E_{1}\right)=0, E_{1} \in T$ and $\pi_{*}\left(G^{\vee} \otimes E_{1}\right) \cong \pi_{*}\left(G^{\vee} \otimes A_{y}\right)=\mathbb{C}_{y}^{\oplus} \mathrm{rk} G$. Hence we have a non-zero morphism $A_{y} \rightarrow E_{1}$. Since $\operatorname{Hom}\left(A_{y}, A_{y}\right) \cong \mathbb{C}, E_{1} \cong A_{y}$ and $E_{2}=0$. For $A_{y} \otimes \mathcal{O}_{C_{y j}}(-1)[1]$, assume that there is an exact sequence in $\mathcal{C}(G)$:

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow A_{y} \otimes \mathcal{O}_{C_{y j}}(-1)[1] \rightarrow E_{2} \rightarrow 0 \tag{1.78}
\end{equation*}
$$

Since $H^{0}\left(E_{2}\right)=0$, we have $E_{2}[-1] \in S$. Then Lemma 1.2.17 implies that we have a non-zero morphism $E_{2} \rightarrow A_{y} \otimes \mathcal{O}_{C_{y j}}(-1)[1]$. Since $\operatorname{Hom}\left(A_{y} \otimes \mathcal{O}_{C_{y j}}(-1)[1], A_{y} \otimes \mathcal{O}_{C_{y j}}(-1)[1]\right)=\mathbb{C}$, we get $E_{1}=0$. Therefore $A_{y} \otimes \mathcal{O}_{C_{y j}}(-1)[1]$ is irreducible.

We give a characterization of T.
Proposition 1.2.20. (1) For $E \in \operatorname{Coh}(X)$, the following are equivalent.
(a) $E \in T$.
(b) $\operatorname{Hom}\left(E, A_{y} \otimes \mathcal{O}_{C_{y j}}(-1)\right)=0$ for all y, j.
(c) $\phi: \pi^{-1}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right) \otimes_{\pi^{-1}(\mathcal{A})} G \rightarrow E$ is surjective.
(2) If (c) holds, then $\operatorname{ker} \phi \in S_{0}$.

Proof. (1) is a consequence of Lemma 1.2.1 and Lemma 1.1.17.
(2) The claim follows from Lemma 1.2.1.

We note that $G \otimes \mathcal{H o m}_{\mathcal{O}_{Z_{y}}}\left(A_{y}, \mathcal{O}_{Z_{y}}\right) \cong \mathcal{O}_{Z_{y}}^{\oplus} \operatorname{rk} G$. Then we have $\mathcal{H o m}_{\mathcal{O}_{Z_{y}}}\left(A_{y}, \mathcal{O}_{Z_{y}}\right) \cong \pi^{-1}\left(\pi_{*}(G \otimes\right.$ $\left.\left.\mathbb{C}_{x}\right)\right) \otimes_{\pi^{-1}(\mathcal{A})} G^{\vee}$. We set

$$
E_{y j}^{*}:= \begin{cases}A_{y} \otimes \omega_{Z_{y}}[1], & j=0 \tag{1.79}\\ A_{y} \otimes \mathcal{O}_{C_{y j}}(-1), & j>0\end{cases}
$$

Then we also have the following.
Proposition 1.2.21. VB
(1) $E_{y j}^{*}, j=0, \ldots, s_{y}$ are irreducible objects of $\mathcal{C}(G)^{*}$.
(2) $\mathbb{C}_{x}, x \in \pi^{-1}(y)$ is generated by $E_{y j}^{*}$. In particular, irreducible objects of $\mathcal{C}(G)^{*}$ are

$$
\begin{equation*}
\mathbb{C}_{x},\left(x \in X \backslash \pi^{-1}\left(Y_{\pi}\right)\right), E_{y j}^{*},\left(y \in Y_{\pi}, j=0,1, \ldots, s_{y}\right) . \tag{1.80}
\end{equation*}
$$

Lemma 1.2.22. For a point $y \in Y_{\pi}$, let E be a 1-dimensional sheaf on X satisfying the following two conditions:
(i) $\operatorname{Hom}\left(A_{y} \otimes \mathcal{O}_{C_{y j}}(-1), E\right)=\operatorname{Ext}^{1}\left(A_{y} \otimes \mathcal{O}_{C_{y j}}(-1), E\right)=0$ for all j.
(ii) There is an exact sequence

$$
\begin{equation*}
0 \rightarrow E \rightarrow F \rightarrow \mathbb{C}_{x} \rightarrow 0 \tag{1.81}
\end{equation*}
$$

such that F is a G-twisted semi-stable 1-dimensional sheaf with $\pi(\operatorname{Supp}(F))=\{y\}, \chi(G, F)=0$ and $x \in Z_{y}$.
Then $E \cong A_{y} \otimes \omega_{Z_{y}}$.
Proof. We set $n:=\operatorname{dim} X$. For a purely 1-dimensional sheaf E on $X, \mathbf{R H o m} \mathcal{O}_{X}\left(E, K_{X}[n-1]\right) \in \operatorname{Coh}(X)$ and $\mathbf{R} \mathcal{H o m}_{\mathcal{O}_{X}}\left(E, K_{X}[n-1]\right)=\mathcal{H o m}_{\mathcal{O}_{C}}\left(E, \omega_{C}\right)$ if E is a locally free sheaf on a curve without embedded primes. Hence the claim follows from Lemma 1.2.18
1.3. Families of perverse coherent sheaves. We shall explain families of complexes which correspond to families of \mathcal{A}-modules via Morita equivalence. Let $f: X \rightarrow S$ and $g: Y \rightarrow S$ be flat families of projective varieties parametrized by a scheme S and $\pi: X \rightarrow Y$ an S-morphism. Let $\mathcal{O}_{Y}(1)$ be a relatively ample line bundle over $Y \rightarrow S$. We assume that
(i) $X \rightarrow S$ is a smooth family,
(ii) there is a locally free sheaf G on X such that $G_{s}:=G_{\mid f-1(s)}, s \in S$ are local projective generators of a family of abelian categories $\mathcal{C}_{s} \subset \mathbf{D}\left(X_{s}\right)$ and
(iii) $\operatorname{dim} \pi^{-1}(y) \leq 1$ for all $y \in Y$, i.e., π satisfies Assumption 1.1.4,

Then \mathcal{C}_{s} is a tilting of $\operatorname{Coh}\left(X_{s}\right)$.
Remark 1.3.1. (i), (ii) and (iii) imply that
(iv) $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0$.
(v)

$$
\begin{equation*}
\left\{E \in \operatorname{Coh}(X) \mid \mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right)=0\right\}=0 \tag{1.82}
\end{equation*}
$$

Thus G defines a tilting \mathcal{C} of $\operatorname{Coh}(X)$.
Indeed if $E \in \operatorname{Coh}(X)$ satisfies $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right)=0$, then the projection formula implies that $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E \stackrel{\mathbf{L}}{\otimes}\right.$ $\left.\mathbf{L} f^{*}\left(\mathbb{C}_{s}\right)\right)=\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right) \stackrel{\mathbf{L}}{\otimes} \mathbf{L} g^{*}\left(\mathbb{C}_{s}\right)=0$ for all $s \in S$. Then $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes H^{p}\left(E \stackrel{\mathbf{L}}{\otimes} \mathbf{L} f^{*}\left(\mathbb{C}_{s}\right)\right)\right)=0$ for all p and $s \in S$. By (ii), $H^{p}\left(E \otimes \mathbf{L} f^{*}\left(\mathbb{C}_{s}\right)\right)=0$ for all p and $s \in S$. Therefore (v) holds. (iv) is obvious. Conversely if (i), (iii), (iv) and (v) hold, then (ii) holds. So we may replace (ii) by (iv) and (v).

For a morphism $T \rightarrow S$, we set $X_{T}:=X \times_{S} T, Y_{T}:=Y \times{ }_{S} T$ and $\pi_{T}:=\pi \times \mathrm{id}_{T}$.
Definition 1.3.2. (1) A family of objects in $\mathcal{C}_{s}, s \in S$ means a bounded complex F^{\bullet} of coherent sheaves on X such that F^{i} are flat over S and $F_{s}^{\bullet} \in \mathcal{C}_{s}$ for all $s \in S$.
(2) A family of local projective generators is a locally free sheaf G on X such that $G_{s}:=G_{\mid f^{-1}(s)}, s \in S$ are local projective generators of a family of abelian categories \mathcal{C}_{s}.

Remark 1.3.3. If $F_{s}^{\bullet} \in \operatorname{Coh}\left(X_{s}\right)$ for all $s \in S$, then F^{\bullet} is isomorphic to a coherent sheaf on X which is flat over S.
Lemma 1.3.4. For a family F^{\bullet} of objects in $\mathcal{C}_{s}, s \in S$, there is a complex \widetilde{F}^{\bullet} such that (i) $\widetilde{F}_{s}^{i} \in \mathcal{C}_{s}, s \in S$, (ii) \widetilde{F}^{i} are flat over S, and (iii) $F^{\bullet} \cong \widetilde{F}$.

Proof. We set $d:=\operatorname{dim} X_{s}, s \in S$. For the bounded complex F^{\bullet}, we take a locally free resolution of \mathcal{O}_{X}

$$
\begin{equation*}
0 \rightarrow V_{-d} \rightarrow \cdots \rightarrow V_{-1} \rightarrow V_{0} \rightarrow \mathcal{O}_{X} \rightarrow 0 \tag{1.83}
\end{equation*}
$$

such that $R^{k} \pi_{*}\left(\left(G^{\vee} \otimes V_{i}^{\vee} \otimes F^{j}\right)_{s}\right)=0, k>0$ for $0 \leq i \leq d-1$ and all j. Since $X \rightarrow Y$ is projective, we can take such a resolution. Then $R^{k} \pi_{*}\left(\left(G^{\vee} \otimes V_{-d}^{\vee} \otimes F^{j}\right)_{s}\right)=0, k>0$ for all j. Therefore we have an isomorphism $F^{\bullet} \cong V_{\bullet}^{\vee} \otimes F^{\bullet}$ such that $\left(V_{\bullet}^{\vee} \otimes F^{\bullet}\right)^{i}$ are S-flat and $\left(V_{\bullet}^{\vee} \otimes F^{\bullet}\right)_{s}^{i}=\oplus_{p+q=i} V_{-p}^{\vee} \otimes F_{s}^{q} \in \mathcal{C}_{s}$ for all $s \in S$.

Proposition 1.3.5. (1) Let F^{\bullet} be a family of objects in $\mathcal{C}_{s}, s \in S$. Then we get

$$
\begin{equation*}
F^{\bullet} \cong \operatorname{Cone}\left(E_{1} \rightarrow E_{2}\right), \tag{1.84}
\end{equation*}
$$

where $E_{i} \in \operatorname{Coh}(X)$ are flat over S and $\left(E_{i}\right)_{s} \in \mathcal{C}_{s}, s \in S$.
(2) Let F^{\bullet} be a family of objects in $\mathcal{C}_{s}, s \in S$. Then we have a complex

$$
\begin{equation*}
G\left(-n_{1}\right) \otimes f^{*}\left(U_{1}\right) \rightarrow G\left(-n_{2}\right) \otimes f^{*}\left(U_{2}\right) \rightarrow F^{\bullet} \rightarrow 0 \tag{1.85}
\end{equation*}
$$

whose restriction to $s \in S$ is exact in \mathcal{C}_{s}, where U_{1}, U_{2} are locally free sheaves on S.
(3) Let F be an \mathcal{A}-module flat over S. Then we can attach a family E of objects in $\mathcal{C}_{s}, s \in S$ such that $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes E\right)=F$. The correspondence is functorial and E is unique in $\mathbf{D}(X)$. We denote E by $\pi^{-1}(F) \otimes_{\pi^{-1}(\mathcal{A})} G$.
Proof. (1) We may assume that (i), (ii), (iii) in Lemma 1.3 .4 hold for F^{\bullet}. We take a sufficiently large n with $\operatorname{Hom}_{f}\left(G(-n), F^{j}[i]\right)=0, i>0$ for all j. Then $W^{j}:=\operatorname{Hom}_{f}\left(G(-n), F^{j}\right)$ are locally free sheaves. Let $W^{\bullet}:=$ $\mathbf{R} \operatorname{Hom}_{f}\left(G(-n), F^{\bullet}\right)$ be the complex defined by $W^{j}, j \in \mathbb{Z}$. Then we have a morphism $G(-n) \otimes f^{*}\left(W^{\bullet}\right) \rightarrow$ F^{\bullet}. Since $F_{s}^{\bullet} \in \mathcal{C}_{s}, s \in S, \operatorname{Hom}\left(G_{s}(-n), F_{s}^{\bullet}[i]\right)=0$ for $i \neq 0$ and all $s \in S$. Then the base change theorem implies that $U:=\operatorname{Hom}_{f}\left(G(-n), F^{\bullet}\right)$ is a locally free sheaf on S and $\operatorname{Hom}_{f}\left(G(-n), F^{\bullet}\right)_{s} \cong \operatorname{Hom}\left(G(-n)_{s}, F_{s}^{\bullet}\right)$. Hence $G(-n) \otimes f^{*}\left(W^{\bullet}\right) \cong G(-n) \otimes f^{*}(U)$, which defines a family of morphisms

$$
\begin{equation*}
G(-n) \otimes f^{*}(U) \rightarrow F^{\bullet} \tag{1.86}
\end{equation*}
$$

Since $F_{s}^{\bullet} \in \mathcal{C}_{s}$ for all $s \in S, \mathbf{R} \pi_{*}\left(G^{\vee} \otimes F^{\bullet}\right)$ is a coherent sheaf on Y which is flat over S, and $g^{*} g_{*}\left(\pi_{*}\left(G^{\vee} \otimes\right.\right.$ $\left.\left.F^{\bullet}\right)(n)\right) \rightarrow \pi_{*}\left(G^{\vee} \otimes F^{\bullet}\right)(n)$ is surjective in $\operatorname{Coh}(Y)$ for $n \gg 0$. Since $W^{\bullet} \cong g_{*}\left(\pi_{*}\left(G^{\vee} \otimes F^{\bullet}\right)(n)\right)$, the homomorphism

$$
\begin{equation*}
\pi_{*}\left(G^{\vee} \otimes G\right)(-n) \otimes g^{*}(U) \rightarrow \pi_{*}\left(G^{\vee} \otimes F^{\bullet}\right) \tag{1.87}
\end{equation*}
$$

in $\operatorname{Coh}(Y)$ is surjective for $n \gg 0$. Thus we have a family of exact sequences

$$
\begin{equation*}
0 \rightarrow E^{\bullet} \rightarrow G(-n) \otimes f^{*}(U) \rightarrow F^{\bullet} \rightarrow 0 \tag{1.88}
\end{equation*}
$$

in $\mathcal{C}_{s}, s \in S$. Since $G \in \operatorname{Coh}(X)$, we have $E^{\bullet} \in \operatorname{Coh}(X)$ which is flat over S. (2) is a consequence of (1).
(3) We take a resolution of F

$$
\begin{equation*}
\cdots \xrightarrow{d^{-3}} g^{*}\left(U_{-2}\right) \otimes \mathcal{A}\left(-n_{2}\right) \xrightarrow{d^{-2}} g^{*}\left(U_{-1}\right) \otimes \mathcal{A}\left(-n_{1}\right) \xrightarrow{d^{-1}} g^{*}\left(U_{0}\right) \otimes \mathcal{A}\left(-n_{0}\right) \rightarrow F \rightarrow 0 \tag{1.89}
\end{equation*}
$$

where U_{i} are locally free sheaves on S. Then we have a complex

$$
\begin{equation*}
\cdots \xrightarrow{\tilde{d}^{-3}} f^{*}\left(U_{-2}\right) \otimes G\left(-n_{2}\right) \xrightarrow{\tilde{d}^{-2}} f^{*}\left(U_{-1}\right) \otimes G\left(-n_{1}\right) \xrightarrow{\tilde{d}^{-1}} f^{*}\left(U_{0}\right) \otimes G\left(-n_{0}\right) \tag{1.90}
\end{equation*}
$$

By the Morita equivalence (Proposition 1.1.3), we have $\operatorname{im} \tilde{d}_{s}^{-i}=\operatorname{ker} \tilde{d}_{s}^{-i+1}$ in \mathcal{C}_{s} for all $s \in S$. Let coker \tilde{d}^{-2} be the cokernel of \tilde{d}^{-2} in $\operatorname{Coh}(X)$. Then by Lemma 1.3 .6 below, coker \tilde{d}^{-2} is flat over $S,\left(\operatorname{coker} \tilde{d}^{-2}\right)_{s}=$ $\operatorname{coker}\left(\tilde{d}_{s}^{-2}\right) \in \mathcal{C}_{s}$ and

$$
\begin{equation*}
E:=\operatorname{Cone}\left(\operatorname{coker} \tilde{d}^{-2} \rightarrow f^{*}\left(U_{0}\right) \otimes G\left(-n_{0}\right)\right) \tag{1.91}
\end{equation*}
$$

is a family of objects in \mathcal{C}_{s}. By the construction, we have $E_{s}=\pi^{-1}\left(F_{s}\right) \otimes_{\pi^{-1}\left(\mathcal{A}_{s}\right)} G_{s}$. It is easy to see the class of E in $\mathbf{D}(X)$ does not depend on the choice of the resolution (1.89) (cf. [B-S, Lem. 14]).

Lemma 1.3.6. Let $E^{i}, 0 \leq i \leq 3$ be coherent sheaves on X which are flat over S. Let

$$
\begin{equation*}
E^{0} \xrightarrow{d^{0}} E^{1} \xrightarrow{d^{1}} E^{2} \xrightarrow{d^{2}} E^{3} \tag{1.92}
\end{equation*}
$$

be a complex in $\operatorname{Coh}(X)$.
(1) If $\operatorname{ker} d_{s}^{1}=\operatorname{im} d_{s}^{0}$ in $\operatorname{Coh}\left(X_{s}\right)$, then $\left(\operatorname{im} d^{1}\right)_{s} \rightarrow E_{s}^{2}$ is injective. In particular if $\operatorname{ker} d_{s}^{1}=\operatorname{im} d_{s}^{0}$ in $\operatorname{Coh}\left(X_{s}\right)$ for all $s \in S$, then $\operatorname{coker} d^{1}, \operatorname{im} d^{1}, \operatorname{ker} d^{1}$ in $\operatorname{Coh}(X)$ are flat over S and $\operatorname{im} d^{0}=\operatorname{ker} d^{1}$.
(2) Assume that $E_{s}^{i} \in \mathcal{C}_{s}$ for all $s \in S$. We denote the kernel, cokernel and the image of d_{s}^{i} in \mathcal{C}_{s} by $\operatorname{ker}_{\mathcal{C}_{s}} d_{s}^{i}, \operatorname{coker}_{\mathcal{C}_{s}} d_{s}^{i}$ and $\operatorname{im}_{\mathcal{C}_{s}} d_{s}^{i}$ respectively. If $E_{s}^{i} \in \mathcal{C}_{s}$ and $\operatorname{ker}_{\mathcal{C}_{s}} d_{s}^{i}=\operatorname{im}_{\mathcal{C}_{s}} d_{s}^{i-1}, i=1,2$ in \mathcal{C}_{s} for all s, then $\operatorname{im}_{\mathcal{C}_{s}} d_{s}^{i-1}$ coincide with the image of d_{s}^{i-1} in $\operatorname{Coh}\left(X_{s}\right)$ for $i=1,2$ and $\operatorname{ker}_{\mathcal{C}_{s}} d_{s}^{1}$ coincides with the kernel of d_{s}^{1} in $\operatorname{Coh}\left(X_{s}\right)$. In particular, $\bar{E}^{\bullet}: E^{2} / d^{1}\left(E^{1}\right) \rightarrow E^{3}$ is a family of objects in \mathcal{C}_{s} and we get an exact triangle:

$$
\begin{equation*}
\operatorname{ker} d^{0} \rightarrow E^{\bullet} \rightarrow \bar{E}^{\bullet} \rightarrow \operatorname{ker} d^{0}[1] \tag{1.93}
\end{equation*}
$$

where $\operatorname{ker} d^{0}$ is the kernel of d^{0} in $\operatorname{Coh}(X)$, which is flat over S.
Proof. (1) Let K be the kernel of $\xi:\left(\operatorname{im} d^{1}\right)_{s} \rightarrow E_{s}^{2}$. Then we have an exact sequence

$$
\begin{equation*}
\left(\operatorname{ker} d^{1}\right)_{s} \rightarrow \operatorname{ker}\left(d_{s}^{1}\right) \rightarrow K \rightarrow 0 \tag{1.94}
\end{equation*}
$$

Since the image of $E_{s}^{0} \rightarrow\left(\operatorname{ker} d^{1}\right)_{s} \rightarrow E_{s}^{1}$ is $d_{s}^{0}\left(E_{s}^{0}\right)=\operatorname{ker}\left(d_{s}^{1}\right), K=0$. The other claims are easily follows from this.
(2) By our assumption, $\operatorname{im}_{\mathcal{C}_{s}} d_{s}^{i}=\operatorname{coker}_{\mathcal{C}_{s}} d_{s}^{i-1}$ for $i=1,2$. Since $\operatorname{im}_{\mathcal{C}_{s}} d_{s}^{i}$ is a subobject of E_{s}^{i+1} for $i=0,1,2, \operatorname{im}_{\mathcal{C}_{s}} d_{s}^{i} \in \operatorname{Coh}\left(X_{s}\right)$ for $i=0,1,2$ and $H^{-1}\left(\operatorname{coker}_{\mathcal{C}_{s}} d_{s}^{i-1}\right)=H^{-1}\left(\operatorname{im}_{\mathcal{C}_{s}} d_{s}^{i}\right)=0$ for $i=1,2$. Then $H^{0}\left(\operatorname{im}_{\mathcal{C}_{s}} d_{s}^{i-1}\right) \rightarrow H^{0}\left(E_{s}^{i}\right)$ is injective for $i=1,2$, which implies that $\operatorname{im}_{\mathcal{C}_{s}} d_{s}^{i-1}$ is the image of d_{s}^{i-1} in $\operatorname{Coh}\left(X_{s}\right)$ for $i=1,2$. By the exact sequence

$$
\begin{equation*}
0 \rightarrow H^{0}\left(\operatorname{ker}_{\mathcal{C}_{s}} d_{s}^{1}\right) \rightarrow H^{0}\left(E_{s}^{1}\right) \rightarrow H^{0}\left(\operatorname{im}_{\mathcal{C}_{s}} d_{s}^{1}\right) \rightarrow 0 \tag{1.95}
\end{equation*}
$$

and the injectivity of $H^{0}\left(\operatorname{im}_{\mathcal{C}_{s}} d_{s}^{1}\right) \rightarrow H^{0}\left(E_{s}^{2}\right), \operatorname{ker}_{\mathcal{C}_{s}} d_{s}^{1}$ is the kernel of d_{s}^{1} in $\operatorname{Coh}\left(X_{s}\right)$. Then the other claims follow from (1).

1.3.1. Quot-schemes.

Lemma 1.3.7. Let \mathcal{A} be an \mathcal{O}_{Y}-algebras on Y which is flat over S. Let B be a coherent \mathcal{A}-module on Y which is flat over S. There is a closed subscheme $\operatorname{Quot}_{B / Y / S}^{\mathcal{A}, P}$ of $Q:=\operatorname{quot}_{B / Y / S}^{P}$ parametrizing all quotient \mathcal{A}_{s}-modules F of B_{s} with $\chi(F(n))=P(n)$.

Proof. Let \mathcal{Q} and \mathcal{K} be the universal quotient and the universal subsheaf of $B \otimes_{\mathcal{O}_{S}} \mathcal{O}_{Q}$:

$$
\begin{equation*}
0 \rightarrow \mathcal{K} \rightarrow B \otimes_{\mathcal{O}_{S}} \mathcal{O}_{Q} \rightarrow \mathcal{Q} \rightarrow 0 \tag{1.96}
\end{equation*}
$$

Then we have a homomorphism

$$
\begin{equation*}
\mathcal{K} \otimes_{\mathcal{O}_{S}} \mathcal{A} \rightarrow B \otimes_{\mathcal{O}_{S}} \mathcal{O}_{Q} \otimes_{\mathcal{O}_{S}} \mathcal{A} \rightarrow B \otimes_{\mathcal{O}_{S}} \mathcal{O}_{Q} \rightarrow \mathcal{Q} \tag{1.97}
\end{equation*}
$$

induced by the multiplication map $B \otimes \mathcal{O}_{S} \mathcal{O}_{Q} \otimes_{\mathcal{O}_{S}} \mathcal{A} \rightarrow B \otimes \mathcal{O}_{S} \mathcal{O}_{Q}$. Let $Z=\operatorname{Quot}_{B / Y / S}^{\mathcal{A}, P}$ be the zero locus of this homomorphism. Then for an S-morphism $T \rightarrow Q, \mathcal{K} \otimes \mathcal{O}_{S} \mathcal{O}_{T}$ is an $\mathcal{A} \otimes \mathcal{O}_{S} \mathcal{O}_{T}$-submodule of $B \otimes \mathcal{O}_{S} \mathcal{O}_{T}$ if and only if $T \rightarrow Q$ factors through Z.
Corollary 1.3.8. Let G^{\prime} be a family of objects in $\mathcal{C}_{s}, s \in S$. Then there is a quot-scheme Quot ${ }_{G^{\prime} / X / S}^{\mathcal{C}, P}$ parametrizing all quotients $G_{s}^{\prime} \rightarrow E$ in \mathcal{C}_{s}, where P is the G_{s}-twisted Hilbert-polynomial of the quotient $G_{s} \rightarrow E, s \in S$.
Proof. We set $\mathcal{A}:=\pi_{*}\left(G^{\vee} \otimes_{\mathcal{O}_{X}} G\right)$. Then \mathcal{A} is a flat family of \mathcal{O}_{Y}-algebras on Y and we have an equivalence between the category of \mathcal{A}_{T}-modules F flat over T and the categoty of families E of objects in $\mathcal{C}_{t}, t \in T$ by $F \mapsto \pi_{T}^{-1}(F) \otimes_{\pi^{-1}\left(\mathcal{A}_{T}\right)} G_{T}$. So the claim holds.
1.4. Stability for perverse coherent sheaves. For a non-zero object $E \in \mathcal{C}_{s}, \chi\left(G_{s}, E(n)\right)=\chi\left(\mathbf{R} \pi_{*}\left(G_{s}^{\vee} \otimes\right.\right.$ $E)(n))>0$ for $n \gg 0$ and there are integers $a_{i}(E)$ such that

$$
\begin{equation*}
\chi\left(G_{s}, E(n)\right)=\sum_{i} a_{i}(E)\binom{n+i}{i} \tag{1.98}
\end{equation*}
$$

Definition 1.4.1 (Simpson). Assume that \mathcal{C}_{s} is a tilting of $\operatorname{Coh}\left(X_{s}\right)$ for all $s \in S$.
(1) An object $E \in \mathcal{C}_{s}$ is d-dimensional, if $a_{d}(E)>0$ and $a_{i}(E)=0, i>d$.
(2) An object $E \in \mathcal{C}_{s}$ of dimension d is G_{s}-twisted semi-stable if

$$
\begin{equation*}
\chi\left(G_{s}, F(n)\right) \leq \frac{a_{d}(F)}{a_{d}(E)} \chi\left(G_{s}, E(n)\right), n \gg 0 \tag{1.99}
\end{equation*}
$$

for all proper subobject F of E.
Remark 1.4.2. (1) If $\operatorname{dim} E>\operatorname{dim} \pi\left(Z_{s}\right)$ and E is G_{s}-twisted semi-stable, then $H^{-1}(E)=0$. Indeed $H^{-1}(E)[1]$ is a subobject of E with

$$
\begin{equation*}
\operatorname{deg} \chi\left(G_{s}, H^{-1}(E)(n)\right) \leq \operatorname{dim} \pi\left(Z_{s}\right)<\operatorname{deg} \chi\left(G_{s}, E(n)\right) \tag{1.100}
\end{equation*}
$$

(2) Assume that $E \in \operatorname{Coh}\left(X_{s}\right) \cap \mathcal{C}_{s}$. For an exact sequence

$$
\begin{equation*}
0 \rightarrow F \rightarrow E \rightarrow F^{\prime} \rightarrow 0 \tag{1.101}
\end{equation*}
$$

in \mathcal{C}_{s}, we have an exact sequence in $\operatorname{Coh}\left(X_{s}\right)$

$$
\begin{equation*}
H^{-1}\left(F^{\prime}\right) \xrightarrow{\varphi} H^{0}(F) \rightarrow H^{0}(E) \rightarrow H^{0}\left(F^{\prime}\right) \rightarrow 0 \tag{1.102}
\end{equation*}
$$

Since $\chi\left(G_{s}, H^{0}(F)(n)\right) \leq \chi\left(G_{s},(\operatorname{coker} \varphi)(n)\right)$, in order to check the semi-stability of E, we may assume that $H^{-1}\left(F^{\prime}\right)=0$.
Proposition 1.4.3. There is a coarse moduli scheme $\bar{M}_{X / S}^{\mathcal{C}, P} \rightarrow S$ of G_{s}-twisted semi-stable objects $E \in \mathcal{C}_{s}$ with the G_{s}-twisted Hilbert polynomial $P . \bar{M}_{X / S}^{\mathcal{C}, P}$ is a projective scheme over S.
Proof. The claim is due to Simpson [S, Thm. 4.7]. We set $\mathcal{A}:=\pi_{*}\left(G^{\vee} \otimes G\right)$. If we set $\Lambda_{0}=\mathcal{O}_{Y}$ and $\Lambda_{k}=\mathcal{A}$ for $k \geq 1$, then a sheaf of \mathcal{A}-module is an example of Λ-modules in [S]. Let $Q^{s s}$ be an open subscheme of $\operatorname{Quot}_{\mathcal{A}(-n) \otimes V / Y / S}^{\mathcal{A}, P}$ consisting of semi-stable \mathcal{A}_{s}-modules on $Y_{s}, s \in S$. Then we have the moduli space $\bar{M}_{Y / S}^{\mathcal{A}, P} \rightarrow S$ of semi-stable \mathcal{A}_{s}-modules on Y_{s} as a GIT-quotient $Q^{s s} / / G L(V)$, where we use a natural polarization on the embedding of the quot-scheme into the Grassmannian. By a standard argument due to Langton, we see that $\bar{M}_{Y / S}^{\mathcal{A}, P}$ is projective over S. Since the semi-stable \mathcal{A}_{s}-modules correspond to G_{s}-twisted semi-stable objects via the Morita equivalence (Proposition 1.3.5), we get the moduli space $\bar{M}_{X / S}^{\mathcal{C}, P} \rightarrow S$, which is projective over S.

We consider a natural relative polarization on $\bar{M}_{X / S}^{\mathcal{C}, P}$. Let $Q^{s s}$ be the open subscheme of Quot ${ }_{G(-n) \otimes V / X / S}^{\mathcal{C}, P} \cong$ Quot $_{\mathcal{A}(-n) \otimes V / Y / S}^{\mathcal{A}, P}$ such that $\bar{M}_{X / S}^{\mathcal{C}, P}=Q^{s s} / / G L(V)$, where V is a vector space of dimension $P(n)$. Let \mathcal{Q} be the universal quotient on $Q^{s s} \times X$. Then $\mathcal{Q}_{\mid\{q\} \times X}$ is G-twisted semi-stable for all $q \in Q^{s s}$. By the construction of the moduli space, we have a $G L(V)$-equivariant isomorphism $V \rightarrow p_{Q^{s s}}\left(G^{\vee} \otimes \mathcal{Q}(n)\right)$. We set

$$
\begin{align*}
\mathcal{L}_{m, n} & :=\operatorname{det} p_{Q^{s s!}}\left(G^{\vee} \otimes \mathcal{Q}(n+m)\right)^{\otimes P(n)} \otimes \operatorname{det} p_{Q^{s s!}}\left(G^{\vee} \otimes \mathcal{Q}(n)\right)^{\otimes(-P(m+n))} \tag{1.103}\\
& =\operatorname{det} p_{Q^{s s!}}\left(G^{\vee} \otimes \mathcal{Q}(n+m)\right)^{\otimes P(n)} \otimes \operatorname{det} V^{\otimes(-P(m+n))} .
\end{align*}
$$

We note that $\mathbf{R} \pi_{*}\left(G^{\vee} \otimes \mathcal{Q}\right)$ gives the universal quotient \mathcal{A}-module on $Y \times \operatorname{Quot}_{\mathcal{A}(-n) \otimes V / Y / S}^{\mathcal{A}, P}$. By the construction of the moduli space, we get the following.

Lemma 1.4.4. $\mathcal{L}_{m, n}, m \gg n \gg 0$ is the pull-back of a relatively ample line bundle on $\bar{M}_{X / S}^{\mathcal{C}, P}$.
Assume that $S=\operatorname{Spec}(\mathbb{C})$ and $\operatorname{dim} X=2$. We set $\mathcal{O}_{X}(1)=\mathcal{O}_{X}(H)$.
Definition 1.4.5. (1) For $\mathbf{e} \in K(X)_{\text {top }}, \bar{M}_{H}^{G}(\mathbf{e})$ is the moduli space of G-twisted semi-stable objects E of \mathcal{C} with $\tau(E)=\mathbf{e}$ and $M_{H}^{G}(\mathbf{e})$ the open subscheme consisting of G-twisted stable objects.
(2) Let $\mathcal{M}_{H}(\mathbf{e})^{\mu \text {-ss }}\left(\right.$ resp. $\left.\mathcal{M}_{H}^{G}(\mathbf{e})^{s s}, \mathcal{M}_{H}^{G}(\mathbf{e})^{s}\right)$ be the moduli stack of μ-semi-stable (resp. G-twisted semi-stable, G-twisted stable) objects E of \mathcal{C} with $\tau(E)=\mathbf{e}$.
We set $r_{0}:=r k e$ and $\xi_{0}:=c_{1}(\mathbf{e})$. Then we see that

$$
\begin{align*}
& \operatorname{ch}\left(P(n) G^{\vee}((n+m) H)-P(n+m) G^{\vee}(n H)\right) \\
= & m\left[\frac{(\operatorname{rk} G) r_{0}}{2}\left(H^{2}\right)\left\{(m-2 n) \operatorname{ch} G^{\vee}-n(n+m)\left((\operatorname{rk} G) H-\left(c_{1}(G), H\right) \varrho_{X}\right)\right\}\right. \tag{1.104}\\
& \left.+\left(H,(\operatorname{rk} G) \xi_{0}-r_{0} c_{1}(G)-\frac{(\operatorname{rk} G) r_{0}}{2} K_{X}\right)\left(-\operatorname{ch} G^{\vee}+\frac{n(n+m)}{2}\left(H^{2}\right)(\operatorname{rk} G) \varrho_{X}\right)\right] .
\end{align*}
$$

Lemma 1.4.6. We take $\zeta \in K(X)$ with $\operatorname{ch}(\zeta)=r_{0} H+\left(\xi_{0}, H\right) \varrho_{X}$. Assume that $\tau(G) \in \mathbb{Z} \mathbf{e}$. If $\chi(\mathbf{e}, \mathbf{e})=0$ and $E \cong E \otimes K_{X}$ for all $E \in \mathcal{M}_{H}^{G}(\mathbf{e})^{s s}$, then $\operatorname{det} p_{Q^{s s!}}\left(\mathcal{Q} \otimes \zeta^{\vee}\right) \cong \operatorname{det} p_{Q^{s s!}}\left(\mathcal{Q}^{\vee} \otimes \zeta\right)^{\vee}$ is the pull-back of an ample line bundle $\mathcal{L}(\zeta)$ on $\bar{M}_{H}^{G}(\mathbf{e})$.
Proof. We first note that $\operatorname{det} p_{Q^{s s!}}\left(\mathcal{Q} \otimes E^{\vee}\right) \cong \mathcal{O}_{Q^{s s}}$ for $E \in \mathcal{M}_{H}^{G}(\mathbf{e})^{s s}$. We set $\tau(G)=\lambda \mathbf{e}, \lambda \in \mathbb{Z}_{>0}$. Then $P(n) G^{\vee}((n+m) H)-P(n+m) G^{\vee}(n H) \equiv m n(n+m) \lambda \zeta^{\vee} \bmod \mathbb{Z} \mathbf{e}^{\vee}$. By Lemma 1.4.4 we get our claim.
Definition 1.4.7. (1) $P(\mathbf{e})$ is the set of subobject E^{\prime} of $E \in \mathcal{M}_{H}(\mathbf{e})^{\mu \text {-ss }}$ such that

$$
\begin{equation*}
\frac{\left(c_{1}\left(G^{\vee} \otimes E\right), H\right)}{\operatorname{rk} E}=\frac{\left(c_{1}\left(G^{\vee} \otimes E^{\prime}\right), H\right)}{\operatorname{rk} E^{\prime}} \tag{1.105}
\end{equation*}
$$

(2) For $E^{\prime} \in P(\mathbf{e})$, we define a wall $W_{E^{\prime}} \subset \mathrm{NS}(X) \otimes \mathbb{R}$ as the set of $\alpha \in \mathrm{NS}(X) \otimes \mathbb{R}$ satisfying

$$
\begin{equation*}
\left(\alpha, \frac{c_{1}\left(G^{\vee} \otimes E\right)}{\operatorname{rk} E}-\frac{c_{1}\left(G^{\vee} \otimes E^{\prime}\right)}{\operatorname{rk} E^{\prime}}\right)+\left(\frac{\chi\left(G^{\vee} \otimes E\right)}{\operatorname{rk} E}-\frac{\chi\left(G^{\vee} \otimes E^{\prime}\right)}{\operatorname{rk} E^{\prime}}\right)=0 . \tag{1.106}
\end{equation*}
$$

Since $\tau\left(E^{\prime}\right)$ is finite, $\cup_{E^{\prime}} W_{E^{\prime}}$ is locally finite. If $\alpha \in \mathrm{NS}(X) \otimes \mathbb{Q}$ does not lie on any $W_{E^{\prime}}$, we say that α is general. If a local projective generator G^{\prime} satisfies $\alpha:=c_{1}\left(G^{\prime}\right) / \operatorname{rk} G^{\prime}-c_{1}(G) / \operatorname{rk} G \notin \cup_{E^{\prime}} W_{E^{\prime}}$, then we also call G^{\prime} is general.

Lemma 1.4.8. If G is general, i.e., $0 \notin \cup_{E^{\prime}} W_{E^{\prime}}$, then for $E^{\prime} \in P(\mathbf{e})$,

$$
\begin{equation*}
\frac{\chi(G, \mathbf{e})}{\mathrm{rk} \mathbf{e}}=\frac{\chi\left(G, E^{\prime}\right)}{\mathrm{rk} E^{\prime}} \Longleftrightarrow \frac{\mathbf{e}}{\mathrm{rk} \mathbf{e}}=\frac{\tau\left(E^{\prime}\right)}{\mathrm{rk} E^{\prime}} \in K(X)_{\mathrm{top}} \otimes \mathbb{Q} \tag{1.107}
\end{equation*}
$$

In particular, if \mathbf{e} is primitive, then $\bar{M}_{H}^{G}(\mathbf{e})=M_{H}^{G}(\mathbf{e})$ for a general G.
1.5. A generalization of stability for 0-dimensional objects. It is easy to see that every 0 -dimensional object is G_{s}-twisted semi-stable. Our definition is not sufficient in order to get a good moduli space. So we introduce a refined version of twisted stability.

Definition 1.5.1. Let G, G^{\prime} be families of local projective generators of \mathcal{C}_{s}. A 0 -dimensional object E is $\left(G_{s}, G_{s}^{\prime}\right)$-twisted semi-stable, if

$$
\begin{equation*}
\frac{\chi\left(G_{s}^{\prime}, E_{1}\right)}{\chi\left(G_{s}, E_{1}\right)} \leq \frac{\chi\left(G_{s}^{\prime}, E\right)}{\chi\left(G_{s}, E\right)} \tag{1.108}
\end{equation*}
$$

for all proper subobject E_{1} of E.
By a modification of Simpson's construction of moduli spaces, we can construct the coarse moduli scheme of $\left(G_{s}, G_{s}^{\prime}\right)$-twisted semi-stable objects. From now on, we assume that $S=\operatorname{Spec}(\mathbb{C})$ for simplicity.

Lemma 1.5.2. Let G be a locally free sheaf on X which is a local projective generator of \mathcal{C}.
(1) Assume that there is an exact sequence in \mathcal{C}

$$
\begin{equation*}
0 \rightarrow E^{\prime} \rightarrow V_{0} \rightarrow V_{1} \rightarrow \cdots \rightarrow V_{r} \rightarrow E \rightarrow 0 \tag{1.109}
\end{equation*}
$$

such that V_{i} are local projective objects of \mathcal{C}. If $r \geq \operatorname{dim} X$, then E^{\prime} is a local projective object of \mathcal{C}.
(2) For $E \in K(Y)$, there is a local projective generator G^{\prime} of \mathcal{C} such that $E=G^{\prime}-N G(-n)$, where N and n are sufficiently large integers.

Proof. (1) We first prove that $H^{i}\left(\mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}(E, F)\right)=0, i>\operatorname{dim} X+1$ for all $F \in \mathcal{C}$. Since \mathcal{C} is a tilting of $\operatorname{Coh}(X)$ (Lemma 1.1.7), $H^{i}(E)=H^{i}(F)=0$ for $i \neq-1,0$. By using a spectral sequence, we get

$$
\begin{equation*}
H^{i}\left(\mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}\left(H^{-p}(E)[p], H^{-q}(F)[q]\right)\right)=0 \tag{1.110}
\end{equation*}
$$

for $i>\operatorname{dim} X+1$. Hence we get $H^{i}\left(\mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}(E, F)\right)=0, i>\operatorname{dim} X+1$. Then we see that

$$
\begin{equation*}
H^{i}\left(\mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}\left(E^{\prime}, F\right)\right) \cong H^{i+r+1}\left(\mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}(E, F)\right)=0 \tag{1.111}
\end{equation*}
$$

for all integer with $i>\max \{\operatorname{dim} X-r, 0\}=0$. Therefore E^{\prime} is a local projective object.
(2) We first prove that there are local projective generators G_{1}, G_{2} such that $E=G_{1}-G_{2}$. We may assume that $E \in \mathcal{C}$. We take a resolution of E

$$
\begin{equation*}
0 \rightarrow E^{\prime} \rightarrow G\left(-n_{r}\right)^{\oplus N_{r}} \xrightarrow{\phi} G\left(-n_{r-1}\right)^{\oplus N_{r-1}} \rightarrow \cdots \rightarrow G\left(-n_{0}\right)^{\oplus N_{0}} \rightarrow E \rightarrow 0 . \tag{1.112}
\end{equation*}
$$

If $r \geq \operatorname{dim} X$, then (1) implies that E^{\prime} is a local projective object. We set $r:=2 j_{0}+1$. We set $G_{1}:=$ $E^{\prime} \oplus \oplus_{j=0}^{j_{0}} G\left(-n_{2 j}\right)^{\oplus N_{2 j}}$ and $G_{2}:=\oplus_{j=0}^{j_{0}} G\left(-n_{2 j+1}\right)^{\oplus N_{2 j+1}}$ Then G_{1} and G_{2} are local projective generators and $E=G_{1}-G_{2}$. We take a resolution

$$
\begin{equation*}
0 \rightarrow G_{2}^{\prime} \rightarrow G(-n)^{\oplus N} \rightarrow G_{2} \rightarrow 0 \tag{1.113}
\end{equation*}
$$

such that $G_{2}^{\prime} \in \mathcal{C}$. Then we see that $\mathbf{R} \pi_{*} \mathbf{R} \mathcal{H o m}\left(G_{2}^{\prime}, F\right) \in \operatorname{Coh}(Y)$ for any $F \in \mathcal{C}$. Since $E=\left(G_{1} \oplus G_{2}^{\prime}\right)-$ $G(-n)^{\oplus N}$ and $G_{1} \oplus G_{2}^{\prime}$ is a local projective generator, we get our claim.

Definition 1.5.3. Let A be an element of $K(Y) \otimes \mathbb{Q}$ and G a local projective generator. A 0-dimensional object E is (G, A)-twisted semi-stable, if

$$
\begin{equation*}
\frac{\chi(A, F)}{\chi(G, F)} \leq \frac{\chi(A, E)}{\chi(G, E)} \tag{1.114}
\end{equation*}
$$

for all proper subobject F of E.
By Lemma 1.5.2 we write $N^{\prime} A=G^{\prime}-N G(-n) \in K(X)$, where G^{\prime} is a local projective generator and $n, N, N^{\prime}>0$. Then

$$
\begin{equation*}
\frac{\chi\left(G^{\prime}, E\right)}{\chi(G, E)}=N^{\prime} \frac{\chi(A, E)}{\chi(G, E)}+N \tag{1.115}
\end{equation*}
$$

Hence E is $\left(G, G^{\prime}\right)$-twisted semi-stable if and only if E is (G, A)-twisted semi-stable. Thus we get the following proposition.

Proposition 1.5.4. Let A be an element of $K(Y) \otimes \mathbb{Q}$ and G a local projective generator. Let v be a Mukai vector of a 0 -dimensional object.
(1) There is a coarse moduli scheme $\bar{M}_{\mathcal{O}_{X}(1)}^{G, A}(v)$ of (G, A)-twisted semi-stable objects of \mathcal{C}.
(2) If v is primitive and A is general in $K(Y) \otimes \mathbb{Q}$, then $\bar{M}_{\mathcal{O}_{X}(1)}^{G, A}(v)$ consists of (G, A)-twisted stable objects. Moreover $\bar{M}_{\mathcal{O}_{X}(1)}^{G, A}\left(\varrho_{X}\right)$ is a fine moduli space.
Remark 1.5.5. If $v(E)=\varrho_{X}$ and rk $A=0$, then E is (G, A)-twisted semi-stable if and only if $\chi\left(A, E^{\prime}\right) \leq 0$ for all subobject E^{\prime} of E in \mathcal{C}. Thus the semi-stability does not depend on the choice of G.
Remark 1.5.6. In subsection 1.7 we deal with the twisted sheaves. In this case, we still have the moduli spaces of 0-dimensional stable objects, but $\bar{M}_{\mathcal{O}_{X(1)}}^{G, A}\left(\varrho_{X}\right)$ does not have a universal family.
1.6. Construction of the moduli spaces of \mathcal{A}-modules of dimension 0 . By Proposition 1.1.3 we have an equivalence $\mathcal{C} \rightarrow \operatorname{Coh}_{\mathcal{A}}(Y)$. We set $\mathcal{B}:=\pi_{*}\left(G^{\vee} \otimes G^{\prime}\right)$. Then \mathcal{B} is a local projective generator of $\operatorname{Coh}_{\mathcal{A}}(Y)$: For all $F \in \operatorname{Coh}_{\mathcal{A}}(Y), \mathbf{R} \mathcal{H o m}_{\mathcal{A}}(\mathcal{B}, F)=\mathcal{H o m}_{\mathcal{A}}(\mathcal{B}, F)$ and $\mathbf{R} \mathcal{H o m}{ }_{\mathcal{A}}(\mathcal{B}, F)=0$ if and only if $F=0$. In particular, we have a surjective morphism

$$
\begin{equation*}
\phi: \operatorname{Hom}_{\mathcal{A}}(\mathcal{B}, F) \otimes_{\mathcal{A}} \mathcal{B} \rightarrow F \tag{1.116}
\end{equation*}
$$

For $F \in \operatorname{Coh}_{\mathcal{A}}(Y)$, we set

$$
\begin{equation*}
\chi_{\mathcal{A}}(\mathcal{B}, F):=\chi\left(\mathbf{R} \mathcal{H o m}_{\mathcal{A}}(\mathcal{B}, F)\right) \tag{1.117}
\end{equation*}
$$

For $F \in \operatorname{Coh}_{\mathcal{A}}(Y), \pi^{-1}(F) \otimes_{\pi^{-1}(\mathcal{A})} G$ is $\left(G, G^{\prime}\right)$-twisted semi-stable, if

$$
\begin{equation*}
\frac{\chi_{\mathcal{A}}\left(\mathcal{B}, F_{1}\right)}{\chi\left(F_{1}\right)} \leq \frac{\chi_{\mathcal{A}}(\mathcal{B}, F)}{\chi(F)} \tag{1.118}
\end{equation*}
$$

for all proper sub \mathcal{A}-module F_{1} of F. We define the $(\mathcal{A}, \mathcal{B})$-twisted semi-stability by this inequality.
Proposition 1.6.1. There is a coarse moduli scheme of $(\mathcal{A}, \mathcal{B})$-twisted semi-stable \mathcal{A}-modules of dimension 0 .

Proof of Proposition 1.6.1. Let F be an \mathcal{A}-module of dimension 0. Then $\operatorname{Hom}_{\mathcal{A}}(\mathcal{B}, F) \otimes \mathcal{B} \rightarrow F$ is surjective. Hence all 0-dimensional objects F are parametrized by a quot-scheme $Q:=\operatorname{Quot}_{V \otimes \mathcal{B} / Y / \mathbb{C}}^{\mathcal{A}, m}$, where $m=\chi(F)$ and $\operatorname{dim} V=\chi_{\mathcal{A}}(\mathcal{B}, F)$. Let $V \otimes \mathcal{O}_{Q} \otimes \mathcal{B} \rightarrow \mathcal{F}$ be the universal quotient. For simplicity, we set $\mathcal{F}_{q}:=\mathcal{F}_{\mid\{q\} \times Y}, q \in Q$. For a sufficiently large integer n, we have a quotient $V \otimes H^{0}(Y, \mathcal{B}(n)) \rightarrow H^{0}(Y, F(n))$. We set $W:=H^{0}(Y, \mathcal{B}(n))$. Then we have an embedding

$$
\begin{equation*}
\operatorname{Quot}_{V \otimes \mathcal{B} / Y / \mathbb{C}}^{\mathcal{A}, m} \hookrightarrow G r(V \otimes W, m) \tag{1.119}
\end{equation*}
$$

This embedding is equivariant with respect to the natural action of $\operatorname{PGL}(V)$. The following is well-known.
Lemma 1.6.2. Let $\alpha: V \otimes W \rightarrow U$ be a point of $\mathfrak{G}:=G r(V \otimes W, m)$. Then α belongs to the set $\mathfrak{G}^{s s}$ of semi-stable points if and only if

$$
\begin{equation*}
\frac{\operatorname{dim} U}{\operatorname{dim} V} \leq \frac{\operatorname{dim} \alpha\left(V_{1} \otimes W\right)}{\operatorname{dim} V_{1}} \tag{1.120}
\end{equation*}
$$

for all proper subspace $V_{1} \neq 0$ of V. If the inequality is strict for all V_{1}, then α is stable.
We set

$$
\begin{equation*}
Q^{s s}:=\left\{q \in Q \mid \mathcal{F}_{q} \text { is }(\mathcal{A}, \mathcal{B}) \text {-twisted semi-stable }\right\} \tag{1.121}
\end{equation*}
$$

For $q \in Q^{s s}, V \rightarrow \operatorname{Hom}_{\mathcal{A}}(\mathcal{B}, F)$ is an isomorphism. We only prove that $Q^{s s}=\mathfrak{G}^{s s} \cap Q$. Then Proposition 1.6.1 easily follows.

For an \mathcal{A}-submodule F_{1} of F, we set $V_{1}:=\operatorname{Hom}_{\mathcal{A}}\left(\mathcal{B}, F_{1}\right)$. Then we have a surjective homomorphism $V_{1} \otimes \mathcal{B} \rightarrow F_{1}$. Conversely for a subspace V_{1} of V, we set $F_{1}:=\operatorname{im}\left(V_{1} \otimes \mathcal{B} \rightarrow F\right)$. Then $V_{1} \rightarrow \operatorname{Hom}_{\mathcal{A}}\left(\mathcal{B}, F_{1}\right)$ is injective.

We set

$$
\begin{equation*}
\mathfrak{F}:=\left\{\operatorname{im}\left(V_{1} \otimes \mathcal{B} \rightarrow \mathcal{F}_{q}\right) \mid q \in Q, V_{1} \subset V\right\} . \tag{1.122}
\end{equation*}
$$

Since \mathfrak{F} is bounded, we can take an integer n in the definition of W such that $V_{1} \otimes W \rightarrow H^{0}\left(Y, F_{1}\right)$ is surjective for all $F_{1} \in \mathfrak{F}$. Assume that \mathcal{F}_{q} is $(\mathcal{A}, \mathcal{B})$-twisted semi-stable. For any $V_{1} \subset V$, we set $F_{1}:=\operatorname{im}\left(V_{1} \otimes \mathcal{B} \rightarrow \mathcal{F}_{q}\right)$. Then $\alpha\left(V_{1} \otimes W\right)=H^{0}\left(Y, F_{1}\right)$. Hence

$$
\begin{equation*}
\frac{\operatorname{dim} \alpha\left(V_{1} \otimes W\right)}{\operatorname{dim} V_{1}} \geq \frac{\chi\left(F_{1}\right)}{\operatorname{dim} \operatorname{Hom}_{\mathcal{A}}\left(\mathcal{B}, F_{1}\right)}=\frac{\chi\left(F_{1}\right)}{\chi_{\mathcal{A}}\left(\mathcal{B}, F_{1}\right)} \geq \frac{\chi\left(\mathcal{F}_{q}\right)}{\chi_{\mathcal{A}}\left(\mathcal{B}, \mathcal{F}_{q}\right)}=\frac{\operatorname{dim} \alpha(V \otimes W)}{\operatorname{dim} V} \tag{1.123}
\end{equation*}
$$

Thus $q \in \mathfrak{G}^{s s}$.
We take a point $q \in \mathfrak{G}^{s s} \cap Q$. We first prove that $\psi: V \rightarrow \operatorname{Hom}_{\mathcal{A}}\left(\mathcal{B}, \mathcal{F}_{q}\right)$ is an isomorphism. We set $V_{1}:=\operatorname{ker} \psi$. Since $V_{1} \otimes \mathcal{B} \rightarrow \mathcal{F}_{q}$ is 0 , we get $\alpha\left(V_{1} \otimes W\right)=0$. Then

$$
\begin{equation*}
\frac{\operatorname{dim} U}{\operatorname{dim} V} \leq \frac{\operatorname{dim} \alpha\left(V_{1} \otimes W\right)}{\operatorname{dim} V_{1}}=0 \tag{1.124}
\end{equation*}
$$

which is a contradiction. Therefore ψ is injective. Since $\operatorname{dim} V=\operatorname{dim} \operatorname{Hom}_{\mathcal{A}}\left(\mathcal{B}, \mathcal{F}_{q}\right), \psi$ is an isomorphism. Let $F_{1} \neq 0$ be a proper \mathcal{A}-submodule of \mathcal{F}_{q}. We set $V_{1}:=\operatorname{Hom}_{\mathcal{A}}\left(\mathcal{B}, F_{1}\right)$. Then

$$
\begin{equation*}
\frac{\chi\left(F_{1}\right)}{\operatorname{dim} \operatorname{Hom}_{\mathcal{A}}\left(\mathcal{B}, F_{1}\right)} \geq \frac{\operatorname{dim} \alpha\left(V_{1} \otimes W\right)}{\operatorname{dim} V_{1}} \geq \frac{\operatorname{dim} \alpha(V \otimes W)}{\operatorname{dim} V}=\frac{\chi\left(\mathcal{F}_{q}\right)}{\chi_{\mathcal{A}}\left(\mathcal{B}, \mathcal{F}_{q}\right)} \tag{1.125}
\end{equation*}
$$

Hence \mathcal{F}_{q} is $(\mathcal{A}, \mathcal{B})$-twisted semi-stable. If q is a stable point, then we also see that \mathcal{F}_{q} is $(\mathcal{A}, \mathcal{B})$-twisted stable.

1.7. Twisted case.

1.7.1. Definition. Let $X=\cup_{i} X_{i}$ be an analytic open covering of X and $\beta=\left\{\beta_{i j k} \in H^{0}\left(X_{i} \cap X_{j} \cap X_{k}, \mathcal{O}_{X}^{\times}\right)\right\}$a Cech 2-cocycle of \mathcal{O}_{X}^{\times}. We assume that β defines a torsion element $[\beta]$ of $H^{2}\left(X, \mathcal{O}_{X}^{\times}\right)$. Let $E=\left(\left\{E_{i}\right\},\left\{\varphi_{i j}\right\}\right)$ be a coherent β-twisted sheaf:
(i) E_{i} is a coherent sheaf on X_{i}.
(ii) $\varphi_{i j}: E_{i \mid X_{i} \cap X_{j}} \rightarrow E_{j \mid X_{i} \cap X_{j}}$ is an isomorphism.
(iii) $\varphi_{j i}=\varphi_{i j}^{-1}$.
(iv) $\varphi_{k i} \circ \varphi_{j k} \circ \varphi_{i j}=\beta_{i j k} \operatorname{id}_{X_{i} \cap X_{j} \cap X_{k}}$.

Let G be a locally free β-twisted sheaf and $P:=\mathbb{P}\left(G^{\vee}\right)$ the associated projective bundle over X (cf. Y4, sect. 1.1]). Let $w(P) \in H^{2}(X, \mathbb{Z} / r \mathbb{Z})$ be the characteristic class of $P([Y 4$, Defn. 1.2]). Then $[\beta]$ is trivial if and only if $w(P) \in \operatorname{im}\left(\mathrm{NS}(X) \rightarrow H^{2}(X, \mathbb{Z} / r \mathbb{Z})\right)([\mathrm{Y} 4$, Lem. 1.4]).

Let $\operatorname{Coh}^{\beta}(X)$ be the category of coherent β-twisted sheaves on X and $\mathbf{D}^{\beta}(X)$ the bounded derived category of $\operatorname{Coh}^{\beta}(X)$. Let $K^{\beta}(X)$ be the Grothendieck group of $\operatorname{Coh}^{\beta}(X)$. Then similar statements in Lemma 1.1.5 hold for $\operatorname{Coh}^{\beta}(X)$. Then all results in sections 1.3 and 1.4 hold. In particular, if a locally free β-twisted sheaf G defines a torsion pair, then we have the moduli of G-twisted semi-stable objects. Replacing $\zeta \in K(X)$ by $\zeta \in K^{\beta}(X)$ with $c_{1}(\zeta)=r_{0} H$ and $\chi\left(G \otimes \zeta^{\vee}\right)=0$, Lemma 1.4.6 also holds.
1.7.2. Chern character. We have a homomorphism

$$
\begin{align*}
\operatorname{ch}_{G}: \quad \mathbf{D}^{\beta}(X) & \rightarrow \quad H^{e v}(X, \mathbb{Q}) \\
E & \mapsto \tag{1.126}
\end{align*} \frac{\operatorname{ch}\left(G^{\vee} \otimes E\right)}{\sqrt{\operatorname{ch}\left(G^{\vee} \otimes G\right)}} .
$$

Obviously $\operatorname{ch}_{G}(E)$ depends only on the class in $K^{\beta}(X)$. Since

$$
\begin{equation*}
\operatorname{ch}_{G}(E)^{\vee} \operatorname{ch}_{G}(F)=\frac{\operatorname{ch}\left(\left(G^{\vee} \otimes E\right)^{\vee} \otimes\left(G^{\vee} \otimes F\right)\right)}{\operatorname{ch}\left(G^{\vee} \otimes G\right)}=\operatorname{ch}\left(E^{\vee} \otimes F\right), \tag{1.127}
\end{equation*}
$$

we have the following Riemann-Roch formula.

$$
\begin{equation*}
\chi(E, F)=\int_{X} \operatorname{ch}_{G}(E)^{\vee} \operatorname{ch}_{G}(F) \operatorname{td}_{X} \tag{1.128}
\end{equation*}
$$

Assume that X is a surface. For a torsion G-twisted sheaf E, we can attach the codimension 1 part of the scheme-theoretic support $\operatorname{Div}(E)$ as in the usual sheaves. Then we see that

$$
\begin{equation*}
\operatorname{ch}_{G}(E)=(0,[\operatorname{Div}(E)], a), a \in \mathbb{Q} \tag{1.129}
\end{equation*}
$$

where $[\operatorname{Div}(E)]$ denotes the homology class of the divisor $\operatorname{Div}(E)$ and we regard it as an element of $H^{2}(X, \mathbb{Z})$ by the Poincaré duality. More generally, if $E \in \mathbf{D}^{\beta}(X)$ satisfies rk $H^{i}(E)=0$ for all i, then

$$
\begin{equation*}
\operatorname{ch}_{G}(E)=\left(0, \sum_{i}(-1)^{i}\left[\operatorname{Div}\left(H^{i}(E)\right)\right], a\right), a \in \mathbb{Q} \tag{1.130}
\end{equation*}
$$

We set $c_{1}(E):=\sum_{i}(-1)^{i}\left[\operatorname{Div}\left(H^{i}(E)\right)\right]$.
Remark 1.7.1. If $H^{3}(X, \mathbb{Z})$ is torsion free, then we have an automorphism η of $H^{*}(X, \mathbb{Q})$ such that the image of $\eta \circ \operatorname{ch}_{G}$ is contained in $\operatorname{ch}(K(X)) \subset \mathbb{Z} \oplus H^{2}(X, \mathbb{Z}) \oplus H^{4}\left(X, \frac{1}{2} \mathbb{Z}\right)$ and (1.128) holds if we replace ch ${ }_{G}$ by $\eta \circ \operatorname{ch}_{G}$ (cf. Y4]): We first note that

$$
\begin{equation*}
\operatorname{ch}(K(X))=\left\{(r, D, a) \mid r \in \mathbb{Z}, D \in H^{2}(X, \mathbb{Z}), a-\left(D, K_{X}\right) / 2 \in \mathbb{Z}\right\} \tag{1.131}
\end{equation*}
$$

Replacing the statement of [Y4, Lem. 3.1] by

$$
\begin{align*}
& c_{2}\left(E^{\vee} \otimes E\right)+r(r-1)\left(w(E), K_{X}\right) \\
\equiv & -(r-1)\left(\left(w(E)^{2}\right)-r\left(w(E), K_{X}\right)\right) \quad \bmod 2 r, \tag{1.132}
\end{align*}
$$

we can prove a similar claim to [Y4, Lem. 3.3].
Lemma 1.7.2. Let E be a β-twisted sheaf of $\operatorname{rk} E=0$. Then

$$
\begin{equation*}
[\chi(G, E) \quad \bmod r \mathbb{Z}] \equiv-w(P) \cap[\operatorname{Div}(E)] \tag{1.133}
\end{equation*}
$$

where we identified $H_{0}(X, \mathbb{Z} / r \mathbb{Z})$ with $\mathbb{Z} / r \mathbb{Z}$.
Proof. Since $\chi(G, E)$ and $[\operatorname{Div}(E))]$ are additive, it is sufficient to prove the claim for pure sheaves. If $\operatorname{dim} E=0$ as an object of $\operatorname{Coh}^{\beta}(X)$, then $r \mid \chi(G, E)$ and $\operatorname{Div}(E)=0$. Hence the claim holds. We assume that E is purely 1-dimensional. Then E is a twisted sheaf on $C:=\operatorname{Div}(E)$. Since C is a curve, there is a β-twisted line bundle L on C and we have an equivalence

$$
\begin{align*}
& \varphi: \operatorname{Coh}^{\beta}(C) \rightarrow \operatorname{Coh}(C) \tag{1.134}\\
& E \mapsto \\
& \mapsto \otimes L^{\vee} .
\end{align*}
$$

Then we can take a filtration $0 \subset F_{1} \subset F_{2} \subset \cdots \subset F_{n}=E$ of E such that $\operatorname{Div}\left(F_{i} / F_{i-1}\right)$ are reduced and irreducible curve and F_{i} / F_{i-1} are torsion free β-twisted sheaves of rank 1 on $\operatorname{Div}\left(F_{i} / F_{i-1}\right)$. Replacing E by F_{i} / F_{i-1}, we may assume that E is a twisted sheaf of rank 1 on an irreducible and reduced curve $C=\operatorname{Div}(E)$. Then $\chi(G, E)=\chi\left(\varphi\left(G_{\mid C}\right)^{\vee} \otimes \varphi(E)\right)=\int_{C} c_{1}\left(\varphi\left(G_{\mid C}\right)^{\vee}\right)+r \chi(\varphi(E))$. Since $w(P)_{\mid C}=w\left(P_{\mid C}\right)=c_{1}\left(\varphi\left(G_{\mid C}\right)\right)$ $\bmod r \mathbb{Z},[\chi(G, E) \bmod r \mathbb{Z}] \equiv-w(P) \cap[C]$.

Corollary 1.7.3. For an object E of $\mathbf{D}^{\beta}(X)$, assume that $\mathrm{rk} H^{i}(E)=0$ for all i. Then

$$
\begin{equation*}
[\chi(G, E) \quad \bmod r \mathbb{Z}] \equiv-w(P) \cap[\operatorname{Div}(E)] \tag{1.135}
\end{equation*}
$$

Moreover if $c_{1}(E)=0$, then $\operatorname{ch}_{G}(E) \in \mathbb{Z} \varrho_{X}$.
Proof. The second claim follows from $\int_{X} \operatorname{ch}_{G}(E)=\chi(G, E) / r=(\chi(G, E) / r) \int_{X} \varrho_{X}$.

2. Perverse coherent sheaves for the resolution of rational double points.

2.1. Perverse coherent sheaves on the resolution of rational singularities. Let Y be a projective normal surface with at worst rational singularities and $\pi: X \rightarrow Y$ the minimal resolution. Let $p_{i}, i=$ $1,2, \ldots, n$ be the singular points of Y and $Z_{i}:=\pi^{-1}\left(p_{i}\right)=\sum_{j=1}^{s_{i}} a_{i j} C_{i j}$ their fundamental cycles. Let β be a 2-cocycle of \mathcal{O}_{X}^{\times}whose image in $H^{2}\left(X, \mathcal{O}_{X}^{\times}\right)$is a torsion element. For β-twisted line bundles $L_{i j}$ on $C_{i j}$, we shall define abelian categories $\operatorname{Per}\left(X / Y,\left\{L_{i j}\right\}\right)$ and $\operatorname{Per}\left(X / Y,\left\{L_{i j}\right\}\right)^{*}$.
Proposition 2.1.1. (1) There is a locally free sheaf E such that $\chi\left(E, L_{i j}\right)=0$ for all i, j and $R^{1} \pi_{*}\left(E^{\vee} \otimes\right.$ $E)=0$.
(2) $\mathcal{C}(E)$ is the tilting of $\operatorname{Coh}^{\beta}(X)$ with respect to the torsion pair (S, T) such that

$$
\begin{align*}
& S:=\left\{E \in \operatorname{Coh}^{\beta}(X) \mid E \text { is generated by subsheaves of } L_{i j}\right\} \tag{2.1}\\
& T:=\left\{E \in \operatorname{Coh}^{\beta}(X) \mid \operatorname{Hom}\left(E, L_{i j}\right)=0\right\}
\end{align*}
$$

(3) $\mathcal{C}(E)^{*}$ is the tilting of $\operatorname{Coh}^{\beta}(X)$ with respect to the torsion pair $\left(S^{*}, T^{*}\right)$ such that

$$
\begin{align*}
S^{*} & :=\left\{E \in \operatorname{Coh}^{\beta}(X) \mid E \text { is generated by subsheaves of } A_{p_{i}} \otimes \omega_{Z_{i}}\right\} \\
T^{*} & :=\left\{E \in \operatorname{Coh}^{\beta}(X) \mid \operatorname{Hom}\left(E, A_{p_{i}} \otimes \omega_{Z_{i}}\right)=0\right\} \tag{2.2}
\end{align*}
$$

For the proof of (1), we shall use the deformation theory of a coherent twisted sheaf.
Definition 2.1.2. For a coherent β-twisted sheaf E on a scheme $W, \operatorname{Def}(W, E)$ denotes the local deformation space of E fixing $\operatorname{det} E$.

For a complex $E \in \mathbf{D}^{\beta}(X)$, let

$$
\begin{equation*}
\operatorname{Ext}^{i}(E, E)_{0}:=\operatorname{ker}\left(\operatorname{Ext}^{i}(E, E) \xrightarrow{\operatorname{tr}} H^{i}\left(X, \mathcal{O}_{X}\right)\right) \tag{2.3}
\end{equation*}
$$

be the kernel of the trace map. If $\operatorname{Ext}^{2}(E, E)_{0}=0$, then $\operatorname{Def}(W, E)$ is smooth and the Zariski tangent space at E is $\operatorname{Ext}^{1}(E, E)_{0}$. The following is well-known.
Lemma 2.1.3. Let D be a divisor on X. For $E \in \operatorname{Coh}^{\beta}(X)$ with $\operatorname{rk} E>0$, we have a torsion free β-twisted sheaf E^{\prime} such that $\tau\left(E^{\prime}\right)=\tau(E)-n \tau\left(\mathbb{C}_{x}\right)$ and $\operatorname{Ext}^{2}\left(E^{\prime}, E^{\prime}(D)\right)_{0}=0$.
Proof. For a locally free β-twisted sheaf E, we consider a general surjective homomorphism $\phi: E \rightarrow \oplus_{i=1}^{n} \mathbb{C}_{x_{i}}$, $x_{i} \in X$. If n is sufficiently large, then $E^{\prime}:=\operatorname{ker} \phi$ satisfies the claim.

Lemma 2.1.4. Let C be an effective divisor on X. For $(r, \mathcal{L}) \in \mathbb{Z}_{>0} \times \operatorname{Pic}(C)$, the moduli stack of locally free sheaves E on C such that $(\operatorname{rk} E, \operatorname{det} E)=(r, \mathcal{L})$ is irreducible.
Proof. For a locally free sheaf E on C we consider $\phi: H^{0}(X, E(n)) \otimes \mathcal{O}_{C}(-n) \rightarrow E$. Assume that ϕ is surjective. Then there is a subvector space $V \subset H^{0}(X, E(n))$ of $\operatorname{dim} V=r-1$ such that $\psi: V \otimes \mathcal{O}_{C}(-n) \rightarrow E$ is injective for any point of C. Then coker ψ is a line bundle which is isomorphic to $\operatorname{det}(E) \otimes \mathcal{O}_{C}((r-1) n)$. Hence E is parametrized an affine space $\operatorname{Ext}_{\mathcal{O}_{C}}^{1}\left(\mathcal{L} \otimes \mathcal{O}_{C}((r-1) n), \mathcal{O}_{C}(-n) \otimes V\right)=H^{1}\left(C, \mathcal{L}^{\vee}(-r n) \otimes V\right)$. Since the surjectivity of ϕ is an open condition and ϕ is surjective for $n \gg 0$, we get our claim.

Proof of Proposition 2.1.1. (1) For a locally free β-twisted sheaf G on X, we set $g_{i j}:=\chi\left(G, L_{i j}\right)$. Let $\alpha \in$ $\oplus_{i=1}^{n} \oplus_{j=1}^{s_{i}} \mathbb{Q}\left[C_{i j}\right]$ be a \mathbb{Q}-divisor such that $\operatorname{rk} G\left(\alpha, C_{i j}\right)=g_{i j}$. We take a locally free sheaf $A \in \operatorname{Coh}(X)$ such that $c_{1}(A) / \operatorname{rk} A=\alpha$. Then $\chi\left(G \otimes A, L_{i j}\right)=\operatorname{rk} A\left(g_{i j}-\operatorname{rk} G\left(\alpha, C_{i j}\right)\right)=0$ for all i, j. By Lemma 2.1.3 there is a torsion free β-twisted sheaf E on X such that $\tau(E)=\tau(G \otimes A)-n \tau\left(\mathbb{C}_{x}\right)$ and $\operatorname{Hom}\left(E, E\left(K_{X}+C_{i j}\right)\right)_{0}=0$ for all i, j. We consider the restriction morphism

$$
\begin{equation*}
\phi_{i j}: \operatorname{Def}(X, E) \rightarrow \operatorname{Def}\left(C_{i j}, E_{\mid C_{i j}}\right) \tag{2.4}
\end{equation*}
$$

Since $\operatorname{Ext}^{2}\left(E, E\left(-C_{i j}\right)\right)_{0}=0$, we get $\operatorname{Ext}^{2}(E, E)_{0}=0$. Thus $\operatorname{Def}(X, E)$ is smooth. We also have the smoothness of $\operatorname{Def}\left(C_{i j}, E_{\mid C_{i j}}\right)$, by the locally freeness of $E_{\mid C_{i j}}$. We consider the homomorphism of the tangent spaces

$$
\begin{equation*}
\operatorname{Ext}_{\mathcal{O}_{X}}^{1}(E, E)_{0} \rightarrow \operatorname{Ext}_{\mathcal{O}_{C_{i j}}}^{1}\left(E_{\mid C_{i j}}, E_{\mid C_{i j}}\right)_{0} \tag{2.5}
\end{equation*}
$$

Then it is surjective by $\operatorname{Ext}^{2}\left(E, E\left(-C_{i j}\right)\right)_{0}=0$. Therefore ϕ is submersive. By the equivalence φ : $\operatorname{Coh}^{\beta}\left(C_{i j}\right) \rightarrow \operatorname{Coh}\left(C_{i j}\right)$ in (1.134), we have an isomorphism $\operatorname{Def}\left(C_{i j}, E_{\mid C_{i j}}\right) \rightarrow \operatorname{Def}\left(C_{i j}, \varphi\left(E_{\mid C_{i j}}\right)\right)$. Since $\chi\left(E, L_{i j}\right)=0, \operatorname{det}\left(E_{\mid C_{i j}} \otimes L_{i j}^{\vee}\right)=\mathcal{O}_{C_{i j}}(\operatorname{rk} E)$. Then Lemma 2.1.4 implies that E deforms to a β-twisted sheaf such that $E_{\mid C_{i j}} \cong L_{i j}(1)^{\oplus r k} E$. Since these conditions are open condition, there is a locally free β twisted sheaf E such that $E_{\mid C_{i j}} \cong L_{i j}(1)^{\oplus \mathrm{rk} E}$ for all i, j. By taking the double dual of E and using Lemma 1.2.9, we get (1).
(2) Note that $L_{i j}=A_{p_{i}} \otimes \mathcal{O}_{C_{i j}}(-1)$. By Proposition 1.2.19 and Proposition 1.1.19, we get the claim. For (3), we use Proposition 1.2.21 and Proposition 1.1.19

Definition 2.1.5. (1) We set $\operatorname{Per}\left(X / Y,\left\{L_{i j}\right\}\right):=\mathcal{C}(E)$ and $\operatorname{Per}\left(X / Y,\left\{L_{i j}\right\}\right)^{*}:=\mathcal{C}(E)^{*}$.
(2) If β is trivial, then we can write $L_{i j}=\mathcal{O}_{C_{i j}}\left(b_{i j}\right)$. In this case, we set $\operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right):=$ $\operatorname{Per}\left(X / Y,\left\{L_{i j}\right\}\right)$ and $\operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)^{*}:=\operatorname{Per}\left(X / Y,\left\{L_{i j}\right\}\right)^{*}$, where $\mathbf{b}_{i}:=\left(b_{i 1}, b_{i 2}, \ldots, b_{i s_{i}}\right)$.
Remark 2.1.6. If $\mathbf{b}_{i}(0)=(-1,-1, \ldots,-1)$, then $\operatorname{Per}\left(X / Y, \mathbf{b}_{1}(0), \ldots, \mathbf{b}_{n}(0)\right)={ }^{-1} \operatorname{Per}(X / Y)$.
Definition 2.1.7. We set

$$
\begin{align*}
A_{0}\left(\mathbf{b}_{i}\right) & :=A_{p_{i}} \\
A_{0}\left(\mathbf{b}_{i}\right)^{*} & :=A_{p_{i}} \otimes \omega_{Z_{i}} \tag{2.6}
\end{align*}
$$

We collect easy facts on $A_{0}\left(\mathbf{b}_{i}\right)$ and $A_{0}\left(\mathbf{b}_{i}\right)^{*}$ which follow from Lemma 1.2 .18 and Lemma 1.2.22
Lemma 2.1.8.
(1) (a) For $E=A_{0}\left(\mathbf{b}_{i}\right)$, we have

$$
\begin{equation*}
\operatorname{Hom}\left(E, \mathcal{O}_{C_{i j}}\left(b_{i j}\right)\right)=\operatorname{Ext}^{1}\left(E, \mathcal{O}_{C_{i j}}\left(b_{i j}\right)\right)=0,1 \leq j \leq s_{i} \tag{2.7}
\end{equation*}
$$

and there is an exact sequence

$$
\begin{equation*}
0 \longrightarrow F \longrightarrow \mathbb{C}_{x} \longrightarrow 0 \tag{2.8}
\end{equation*}
$$

such that F is a successive extension of $\mathcal{O}_{C_{i j}}\left(b_{i j}\right)$ and $x \in Z_{i}$.
(b) Conversely if E satisfies these conditions, then $E \cong A_{0}\left(\mathbf{b}_{i}\right)$.
(2) (a) For $E=A_{0}\left(\mathbf{b}_{i}\right)^{*}$, we have

$$
\begin{equation*}
\operatorname{Hom}\left(\mathcal{O}_{C_{i j}}\left(b_{i j}\right), E\right)=\operatorname{Ext}^{1}\left(\mathcal{O}_{C_{i j}}\left(b_{i j}\right), E\right)=0,1 \leq j \leq s_{i} \tag{2.9}
\end{equation*}
$$

and there is an exact sequence
such that F is a successive extension of $\mathcal{O}_{C_{i j}}\left(b_{i j}\right)$ and $x \in Z_{i}$.
(b) Conversely if E satisfies these conditions, then $E \cong A_{0}\left(\mathbf{b}_{i}\right)^{*}$.
2.2. Moduli spaces of 0 -dimensional objects. Let $\pi: X \rightarrow Y$ be the minimal resolution of a normal projective surface Y and $p_{1}, p_{2}, \ldots, p_{n}$ the rational double points of Y as in 2.1. We set $Z:=\cup_{i} Z_{i}$. Let G be a locally free sheaf on X which is a tilting generator of the category $\mathcal{C}:=\mathcal{C}_{G}$ in Lemma 1.1.5, For $\alpha \in \operatorname{NS}(X) \otimes \mathbb{Q}$, we define α-twisted semi-stability as $\gamma^{-1}((0, \alpha, 0))$-twisted stability, where γ is the homomorphism (0.2). In this subsection, we shall study the moduli of α-twisted semi-stable objects. For simplicity, we say that α-twisted semi-stability as α-semi-stability. For simplicity, we set $X^{\alpha}:=\bar{M}_{\mathcal{O}_{X}(1)}^{G, \alpha}\left(\varrho_{X}\right)$. Since every 0-dimensional object is 0-semi-stable, we have a natural morphism $\pi_{\alpha}: X^{\alpha} \rightarrow X^{0}$.
Lemma 2.2.1. For a 0 -dimensional object E of \mathcal{C}, there is a proper subspace $T(E)$ of $\operatorname{Ext}^{2}(E, E)$ such that all obstructions for infinitesimal deformations of E belong to $T(E)$.
Proof. Let E be a 0-dimensional object of \mathcal{C}. We first assume that there is a curve $C \in\left|K_{X}\right|$ such that $C \cap \operatorname{Supp}(E)=\emptyset$. Then $H^{0}\left(X, K_{X}\right) \rightarrow \operatorname{Hom}\left(E, E\left(K_{X}\right)\right)$ is non-trivial, which implies that the trace map

$$
\begin{equation*}
\operatorname{tr}: \operatorname{Ext}^{2}(E, E) \rightarrow H^{2}\left(X, \mathcal{O}_{X}\right) \tag{2.11}
\end{equation*}
$$

is non-trivial. Since the obstruction for infinitesimal deformations of E lives in ker $\operatorname{tr}, T(E) \subset$ ker tr is a proper subspace of $\operatorname{Ext}^{2}(E, E)$. For a general case, we use the covering trick. Let D be a very ample divisor on Y such that there is a smooth curve $B \in|2 D|$ with $B \cap \pi(\operatorname{Supp}(E) \cup Z)=\emptyset$ and $\left|K_{Y}+D\right|$ contains a curve C with $C \cap \pi(\operatorname{Supp}(E) \cup Z)=\emptyset$. Since π is isomorphic over $Y \backslash \pi(Z)$, we may regard B and C as divisors on X. Let $\phi: \widetilde{Y} \rightarrow Y$ be the double covering branced along B and set $\widetilde{X}=X \times_{Y} \widetilde{Y}$. We also denote $\widetilde{X} \rightarrow X$ by ϕ. Then $\left|K_{\widetilde{X}}\right|=\left|\phi^{*}\left(K_{X}+D\right)\right|$ contains $\phi^{*}(C)$. Since ϕ is étale over $Y \backslash B$, we have a decomposition $\pi^{*}(E)=E_{1} \oplus E_{2}$ and $\operatorname{Ext}^{2}(E, E) \rightarrow \operatorname{Ext}^{2}\left(E_{i}, E_{i}\right)$ are isomorphism for $i=1,2$. Under these isomorphisms, $T(E)$ is mapped into $T\left(E_{i}\right)$. Since $\operatorname{tr}_{i}: \operatorname{Ext}^{2}\left(E_{i}, E_{i}\right) \rightarrow H^{2}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)$ are non-trivial, ker tr ${ }_{i}$ are proper subspaces of $\operatorname{Ext}^{2}\left(E_{i}, E_{i}\right)$. Hence $T(E)$ is a proper subspace of $\operatorname{Ext}^{2}(E, E)$.
Proposition 2.2.2. (1) For a 0 -dimensional object E of $\mathcal{C}, E \otimes K_{X} \cong E$. In particular, $\operatorname{Ext}^{2}(E, E) \cong$ $\operatorname{Hom}(E, E)^{\vee}$.
(2) For a 0-dimensional Mukai vector $v, M_{\mathcal{O}_{X}(1)}^{G, \alpha}(v)$ is smooth of dimension $\left\langle v^{2}\right\rangle+2$.

Proof. (1) Since $K_{X}=\pi^{*}\left(K_{Y}\right)$ and $\operatorname{dim} \pi(\operatorname{Supp}(E))=0$, we get $E \otimes K_{X} \cong E$. (2) For $E \in M_{\mathcal{O}_{X}(1)}^{G, \alpha}(v)$, we have $\operatorname{Hom}(E, E)=\mathbb{C}$. Then Lemma 2.2.1 implies that $T(E)=0$. Since $\operatorname{dim} \operatorname{Ext}^{1}(E, E)=\left\langle v^{2}\right\rangle+2$, $M_{\mathcal{O}_{X}(1)}^{G, \alpha}(v)$ is smooth of dimension $\left\langle v^{2}\right\rangle+2$.
Remark 2.2.3. There is another argument to prove the smoothness due to Bridgeland $[\mathrm{Br} 1$. We shall use the argument later. So for stable objects, we do not need Lemma 2.2.1 but it is necessary for the study of properly semi-stable objects (see Proposition 2.2.7).

Lemma 2.2.4. Assume that $\alpha \in \mathrm{NS}(X) \otimes \mathbb{Q}$ satisfies that

$$
\begin{equation*}
(\alpha, D) \neq 0 \text { for all } D \in \operatorname{NS}(X) \text { with }\left(D^{2}\right)=-2 \text { and }\left(c_{1}\left(\mathcal{O}_{X}(1)\right), D\right)=0 \tag{2.12}
\end{equation*}
$$

Then $X^{\alpha}=M_{\mathcal{O}_{X}(1)}^{G, \alpha}\left(\varrho_{X}\right)$.
Proof. Assume that $E \in X^{\alpha}$ is S-equivalent to $\oplus_{i=1}^{t} E_{i}$, where E_{i} are α-stable objects. Then $\left(\alpha, c_{1}\left(E_{i}\right)\right)=0$, $\left(c_{1}\left(\mathcal{O}_{X}(1)\right), c_{1}\left(E_{i}\right)\right)=0$ and $\left(c_{1}\left(E_{i}\right)^{2}\right)=\left\langle v\left(E_{i}\right)^{2}\right\rangle \geq-2$ for all i. Since $\left\langle v\left(E_{i}\right), v\left(E_{j}\right)\right\rangle \geq 0$ for $E_{i} \neq E_{j}$ and $\sum_{i, j}\left\langle v\left(E_{i}\right), v\left(E_{j}\right)\right\rangle=\left\langle v(E)^{2}\right\rangle=0$, (i) $\left\langle v\left(E_{i}\right)^{2}\right\rangle=-2$ for an i, or (ii) $\left\langle v\left(E_{i}\right)^{2}\right\rangle=0$ for all i. By our choice of α, the case (i) does not occur. In the second case, we see that $v\left(E_{i}\right)=a_{i} \varrho_{X}, a_{i}>0$. Then $\varrho_{X}=\left(\sum_{i} a_{i}\right) \varrho_{X}$, which implies $t=1$. Therefore E is α-stable.
Lemma 2.2.5. Let \mathcal{E} be an object of $\mathbf{D}\left(X \times X^{\prime}\right)$ such that $\Phi_{X \rightarrow X^{\prime}}^{\mathcal{E}}: \mathbf{D}(X) \rightarrow \mathbf{D}\left(X^{\prime}\right)$ is an equivalence, $\mathcal{E}_{\mid X \times\left\{x^{\prime}\right\}} \in \mathcal{C}$ for all $x^{\prime} \in X^{\prime}$ and $v\left(\mathcal{E}_{\mid X \times\left\{x^{\prime}\right\}}\right)=\varrho_{X}$. Then every irreducible object of \mathcal{C} appears as a direct summand of the S-equivalence class of $\mathcal{E}_{\mid X \times\left\{x^{\prime}\right\}}$.

Proof. Let E be an irreducible object of \mathcal{C}. If $\operatorname{Supp}(E) \not \subset Z$, then we have a non-trivial morphism $E \rightarrow \mathbb{C}_{x}, x \notin Z$. Since $(\mathcal{C})_{\mid X \backslash Z}=\operatorname{Coh}(X \backslash Z), \mathbb{C}_{x}$ is an irreducible object. Hence $E \cong \mathbb{C}_{x}$. Since $\chi\left(\mathcal{E}_{\mid X \times\left\{x^{\prime}\right\}}, \mathbb{C}_{x}\right)=0$ and $\Phi_{X \rightarrow X^{\prime}}^{\mathcal{E}}$ is an equivalence, there is a point $x^{\prime} \in X^{\prime}$ such that $\operatorname{Hom}\left(\mathcal{E}_{\mid X \times\left\{x^{\prime}\right\}}, \mathbb{C}_{x}\right) \neq 0$ or $\operatorname{Hom}\left(\mathbb{C}_{x}, \mathcal{E}_{\mid X \times\left\{x^{\prime}\right\}}\right) \neq 0$. Since $v\left(\mathbb{C}_{x}\right)=v\left(\mathcal{E}_{\mid X \times\left\{x^{\prime}\right\}}\right)=\varrho_{X}$, we get $\mathbb{C}_{x} \cong \mathcal{E}_{\mid X \times\left\{x^{\prime}\right\}}$. If $\operatorname{Supp}(E) \subset \cup_{i} Z_{i}$, then we still have $\chi\left(\mathcal{E}_{\mid X \times\left\{x^{\prime}\right\}}, E\right)=0$, since $\mathcal{E}_{\mid X \times\left\{x^{\prime}\right\}}=\mathbb{C}_{x}, x \notin Z$ for a point $x^{\prime} \in X^{\prime}$. Then we have $\operatorname{Hom}\left(\mathcal{E}_{\mid X \times\left\{x^{\prime}\right\}}, E\right) \neq 0$ or $\operatorname{Hom}\left(E, \mathcal{E}_{\mid X \times\left\{x^{\prime}\right\}}\right) \neq 0$. Therefore our claim holds.
Lemma 2.2.6. If α is general, then X^{α} is irreducible.
Proof. Let X^{\prime} be a connected component of X^{α}. Then we have an equivalence $\Phi_{X \rightarrow X^{\prime}}^{\mathcal{E}^{\vee}}: \mathbf{D}(X) \rightarrow \mathbf{D}\left(X^{\prime}\right)$, where \mathcal{E} is the universal family. By the same argument as in the proof of Lemma 2.2.5, we see that every $E \in X^{\alpha}$ belongs to X^{\prime}.

Proposition 2.2.7. Let \mathcal{X}^{0} be the moduli stack of 0 -semi-stable objects E with $v(E)=\rho_{X}$. Then \mathcal{X}^{0} is a locally complete intersection stack of dimension 1 and irreducible. In particlar \mathcal{X}^{0} is a reduced stack.
Proof. Let Q be an open subscheme of a perverse quot-scheme such that X^{0} is a GIT-quotient of a suitable $G L(N)$-action. Then \mathcal{X}^{0} is the quotient stack $[Q / G L(N)]$. Let \mathcal{E} be the family of 0 -dimensional objects of \mathcal{C} on $Q \times X$. For any point $q \in Q$, we set $n_{1}:=\operatorname{dim} \operatorname{Hom}\left(\mathcal{K}_{q}, \mathcal{E}_{q}\right)$ and $n_{2}:=\operatorname{dim} T\left(\mathcal{E}_{q}\right)$, where \mathcal{K} is the universal subobject on $Q \times X$. Then an analytic neighborhood of Q is an intersection of n_{2} hypersurfaces in $\mathbb{C}^{n_{1}}$. Hence $\operatorname{dim} Q \geq n_{1}-n_{2}$ and $\operatorname{dim}[Q / G L(N)] \geq-\chi\left(\mathcal{E}_{q}, \mathcal{E}_{q}\right)+1=1$. We take a general α and set $Q^{u}:=\left\{q \in Q \mid \mathcal{E}_{q}\right.$ is not α-semi-stable $\}$. By the proof of $\left[\mathrm{O}-\mathrm{Y}\right.$, Prop. 2.16], we see that $\operatorname{dim}\left[Q^{u} / G L(N)\right]=0$. Since $\left[\left(Q \backslash Q^{u}\right) / G L(N)\right]$ is the moduli stack of α-stable objects, it is a smooth and irreducible stack of dimension 1. Hence $[Q / G L(N)]$ is a locally complete intersection stack of dimension 1 and irreducible. In particlar $[Q / G L(N)]$ is a reduced stack.
Lemma 2.2.8. Let E be a 0-semi-stable object with $v(E)=\varrho_{X}$. Then $\operatorname{Supp}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right)$ is a point of Y.
Proof. For E, we have a decomposition $E=\oplus_{i=1}^{t} E_{i} \operatorname{such}$ that $\operatorname{Supp}\left(\pi_{*}\left(G^{\vee} \otimes E_{i}\right)\right), i=1, \ldots, t$ are distinct t points of Y. We set $v\left(E_{i}\right)=\left(0, D_{i}, a_{i}\right)$. Since D_{i} are contained in the exceptional loci, $0=\left\langle v(E)^{2}\right\rangle=\sum_{i}\left(D_{i}^{2}\right)$ implies that $\left(D_{i}^{2}\right)=0$ for all i. Thus we have $v\left(E_{i}\right)=a_{i} \varrho_{X}$ for all i, which implies that $\varrho_{X}=\left(\sum_{i} a_{i}\right) \varrho_{X}$. Since $\chi\left(G, E_{i}\right)>0$, we have $a_{i}>0$. Therefore $t=1$.

By Lemma 1.1.13, we get the following.
Lemma 2.2.9. (1) $\mathbb{C}_{x} \in \mathcal{C}$ for all $x \in X$. In particular, we have a morphism $\varphi: X \rightarrow X^{0}$ by sending $x \in X$ to the S-equivalence class of \mathbb{C}_{x}.
(2) $\varphi\left(Z_{i}\right)$ is a point.

If \mathbb{C}_{x} is properly 0-semi-stable, then \mathbb{C}_{x} is S-equivalent to $\oplus_{j} E_{i j}^{\oplus a_{i j}^{\prime}}$ for an i.
Proposition 2.2.10. There is an isomorphism $\psi: X^{0} \rightarrow Y$ such that $\psi \circ \varphi: X \rightarrow Y$ coincides with π. In particular, X^{0} is a normal projective surface.
Proof. We keep the notation in the proof of Proposition 2.2.7. By Lemma 2.2.8, $\mathcal{F}:=\pi_{*}\left(G^{\vee} \otimes \mathcal{E}\right)$ is a flat family of coherent sheaves on Y such that $\operatorname{Supp}\left(\mathcal{F}_{q}\right)$ is a point for every $q \in Q$. Since the characteristic of the base field is zero, we have a morphism $Q \rightarrow S^{r} Y$, where $r=\operatorname{rk} G$ (cf. [F1], [F2]). Since the image is contained in the diagonal Y, we have a morphism $Q \rightarrow Y$. Hence we have a morphsim $\psi: X^{0} \rightarrow Y$. By the construction of φ and $\psi, \pi=\psi \circ \varphi$. Since φ and ψ are projective birational morphisms between irreducible surfaces, φ and ψ are contractions. By using Lemma 2.2.9, we see that ψ is injective. Hence ψ is a finite morphism. Since Y is normal, ψ is an isomorphism.

Lemma 2.2.11. Assume that $\alpha \in \mathrm{NS}(X) \otimes \mathbb{Q}$ satisfies (2.12). Then $K_{X^{\alpha}}$ is the pull-back of a line bundle on X^{0}.

Proof. Let \mathcal{E} be the universal family on $X^{\alpha} \times X$. Let $p_{S}: S \times X \rightarrow S$ be the projection. Since X^{α} is smooth, the base change theorem implies that $\operatorname{Ext}_{p_{X^{\alpha}}}^{i}(\mathcal{E}, \mathcal{E}), i=0,1,2$ are locally free sheaves on X^{α} and compatible with base changes. Since $\operatorname{Ext}_{p_{X^{\alpha}}}^{1}(\mathcal{E}, \mathcal{E})$ is the tangent bundle of X^{α}, we show that there is a symplectic form on $\operatorname{Ext}_{p_{X^{\alpha}}}^{1}(\mathcal{E}, \mathcal{E})$. For any point $y \in Y$, we take a very ample divisor D_{2} on Y such that $y \notin D_{2},\left|K_{Y}+D_{2}\right|$ contains a divisor D_{1} with $y \notin D_{1}$. We set $U:=Y \backslash\left(D_{1} \cup D_{2}\right)$. Then U is an open neighborhood of y such that K_{Y} is trivial over U. Let \widetilde{D}_{i} be the pull-back of D_{i} to X. Then we have $K_{X}=\mathcal{O}_{X}\left(\widetilde{D}_{1}-\widetilde{D}_{2}\right)$. We set $V:=\pi_{\alpha}^{-1}\left(\psi^{-1}(U)\right)$. We shall prove that (i) the alternating pairing

$$
\begin{equation*}
\operatorname{Ext}_{p_{V}}^{1}(\mathcal{E}, \mathcal{E}) \times \operatorname{Ext}_{p_{V}}^{1}(\mathcal{E}, \mathcal{E}) \rightarrow \operatorname{Ext}_{p_{V}}^{2}(\mathcal{E}, \mathcal{E}) \tag{2.13}
\end{equation*}
$$

is non-degenerate and (ii) $\operatorname{Ext}_{p_{V}}^{2}(\mathcal{E}, \mathcal{E}) \cong \mathcal{O}_{V}$. Since $\operatorname{Ext}_{p_{X^{\alpha}}}^{1}(\mathcal{E}, \mathcal{E})$ is the tangent bundle, this means that $K_{V} \cong \mathcal{O}_{V}$. Thus the claim holds.

We first note that there are isomorphisms

$$
\begin{equation*}
\operatorname{Ext}_{p_{V}}^{i}(\mathcal{E}, \mathcal{E}) \cong \operatorname{Ext}_{p_{V}}^{i}\left(\mathcal{E}, \mathcal{E}\left(\widetilde{D}_{1}\right)\right) \cong \operatorname{Ext}_{p_{V}}^{i}\left(\mathcal{E}, \mathcal{E}\left(\widetilde{D}_{1}-\widetilde{D}_{2}\right)\right), i=0,1,2 \tag{2.14}
\end{equation*}
$$

which is compatible with the base change. By the Serre duality, the trace map $\operatorname{tr}: \operatorname{Ext}^{2}\left(\mathcal{E}_{y}, \mathcal{E}_{y}\left(K_{X}\right)\right) \rightarrow$ $H^{2}\left(X, K_{X}\right)$ is an isomorphism for $y \in V$. Hence (ii) holds. By the Serre duality, the pairing Ext ${ }^{1}\left(\mathcal{E}_{y}, \mathcal{E}_{y}\right) \times$ $\operatorname{Ext}^{1}\left(\mathcal{E}_{y}, \mathcal{E}_{y}\left(K_{X}\right)\right) \rightarrow \operatorname{Ext}^{2}\left(\mathcal{E}_{y}, \mathcal{E}_{y}\left(K_{X}\right)\right) \cong H^{2}\left(X, K_{X}\right)$ is non-degenerate. Combining this with (2.14), we get (i).

Lemma 2.2.12. Assume that $\alpha=0$.
(1) Assume that $p_{i} \in Y$ corresponds to $\bigoplus_{j=0}^{s_{i}} E_{i j}^{\oplus a_{i j}}$ via ψ, where $E_{i j}$ are 0-stable objects. Then $\mathbb{C}_{x}, x \in$ Z_{i} are S-equivalent to $\bigoplus_{j=0}^{s_{i}} E_{i j}^{\oplus a_{i j}}$.
(2) Let $E \in \mathcal{C}$ be a 0-twisted stable object. Then E is one of the following:

$$
\begin{equation*}
\mathbb{C}_{x}(x \in X \backslash Z), \quad E_{i j},\left(1 \leq i \leq n, 0 \leq j \leq s_{i}\right) \tag{2.15}
\end{equation*}
$$

(3) Every 0-dimensional object is generated by (2.15).

Proof. By Proposition 2.2.10. (1) holds. We shall apply Lemma 2.2.5 to $\mathcal{E}=\mathcal{O}_{\Delta} \in \mathbf{D}(X \times X)$. Then (2) is a consequence of (1). It also follows from Lemma 1.1.13 (3). (3) follows from (2).

Remark 2.2.13. If $\mathbf{b}=\mathbf{b}_{0}$, then $\pi_{*}(\mathcal{E})$ is a flat family of coherent sheaves on Y such that $\pi(\mathcal{E})_{q}$ is a point sheaf. Then we have a morphism $Q \rightarrow Y$. Thus we do not need the reducedness of Q in this case.
Definition 2.2.14. We set $Z_{i}^{\alpha}:=\pi_{\alpha}^{-1}\left(\bigoplus_{j} E_{i j}^{\oplus a_{i j}}\right)=\pi_{\alpha}^{-1} \circ \psi^{-1}\left(p_{i}\right)$ and $Z^{\alpha}:=\cup_{i} Z_{i}^{\alpha}$.
Lemma 2.2.15. (cf. $\mathrm{O}-\mathrm{Y}$, Lem. 2.4]) Let $E_{i j}$ be 0-stable objects in Lemma 2.2.12, Assume that $-\left(\alpha, c_{1}\left(E_{i j}\right)\right)>$ 0 for all $j>0$. Let F be a 0-semi-stable object such that $v(F)=v\left(E_{i 0} \oplus \bigoplus_{j>0} E_{i j}^{\oplus b_{j}}\right), 0 \leq b_{j} \leq a_{i j}$.
(1) If $v(F) \neq \varrho_{X}$, then F is S-equivalent to $E_{i 0} \oplus \bigoplus_{j>0} E_{i j}^{\oplus b_{j}}$ with respect to 0-stability.
(2) Assume that F is S-equivalent to $E_{i 0} \oplus \bigoplus_{j>0} E_{i j}^{\oplus b_{j}}$. Then the following conditions are equivalent.
(a) F is α-stable
(b) F is α-semi-stable
(c) $\operatorname{Hom}\left(E_{i j}, F\right)=0$ for all $j>0$.
(3) Assume that F is α-stable. For a non-zero homomorphism $\phi: F \rightarrow E_{i j}, j>0, \phi$ is surjective and $F^{\prime}:=\operatorname{ker} \phi$ is an α-stable object.
(4) If there is a non-trivial extension

$$
\begin{equation*}
0 \rightarrow F \rightarrow F^{\prime \prime} \rightarrow E_{i j} \rightarrow 0 \tag{2.16}
\end{equation*}
$$

and $b_{k}+\delta_{j k} \leq a_{i k}$, then $F^{\prime \prime}$ is an α-stable object, where $\delta_{j k}=0,1$ according as $j \neq k, j=k$.
Proof. (1) Since $E:=F \oplus \bigoplus_{j>0} E_{i j}^{\oplus\left(a_{i j}-b_{j}\right)}$ is a 0-semi-stable object with $v(E)=\varrho_{X}$ and $\operatorname{Supp}\left(\pi_{*}\left(G^{\vee} \otimes E\right)\right)=$ $\operatorname{Supp}\left(\pi_{*}\left(G^{\vee} \otimes F\right)\right) \cup\left\{p_{i}\right\}$, Lemma 2.2.8 and Proposition 2.2.10 imply that the S-equivalence class of E corresponds to $p_{i} \in Y$. Hence E is S-equivalent to $\bigoplus_{j \geq 0} E_{i j}^{\oplus a_{i j}}$, which implies that F is S-equivalent to $E_{i 0} \oplus \bigoplus_{j>0} E_{i j}^{\oplus b_{j}}$.
(2) It is sufficient to prove that (c) implies (a). Let $\psi: F \rightarrow I$ be a quotient of F. Since I and ker ψ are 0 -dimensional objects, they are 0 -semi-stable. Since $\operatorname{Hom}\left(E_{i j}, \operatorname{ker} \psi\right)=0$ for $j>0,(1)$ implies that $E_{i 0}$ is a subobject of ker ψ. Hence $v(I)=\sum_{j>0} b_{j}^{\prime} v_{i j}$, which implies that F is α-stable.
(3) Since $E_{i j}$ is irreducible, ϕ is surjective. By (1), $\operatorname{ker} \phi$ also satisfies the assumption of (2). Let $\psi: \operatorname{ker} \phi \rightarrow I$ be a quotient object. Since $\operatorname{Hom}\left(E_{i k}, F\right)=0$ for $k>0,(2)$ implies that $\operatorname{ker} \phi$ is α-stable.
(4) Since $v(F) \neq \varrho_{X}$, (1) implies that $F^{\prime \prime}$ satisfies the assumption of (2). If $\operatorname{Hom}\left(E_{i k}, F^{\prime \prime}\right) \neq 0$, then $\operatorname{Hom}\left(E_{i k}, F\right)=0$ implies that $k=j$ and we have a splitting of the exact sequence. Hence $\operatorname{Hom}\left(E_{i k}, F^{\prime \prime}\right)=0$ for $k>0$. Then (2) implies the claim.

Corollary 2.2.16. Assume that $-\left(\alpha, c_{1}\left(E_{i j}\right)\right)>0$ for all $j>0$. We set $v:=v\left(E_{i 0} \oplus \oplus_{j>0} E_{i j}^{\oplus b_{j}}\right), 0 \leq b_{j} \leq$ $a_{i j}$ with $\left\langle v^{2}\right\rangle=-2$.
(1) $\operatorname{dim} \operatorname{Hom}\left(E, E_{i j}\right)=\max \left\{-\left\langle v, v\left(E_{i j}\right)\right\rangle, 0\right\}$.
(2) If $-\left\langle v, v\left(E_{i j}\right)\right\rangle>0$, then $M_{\mathcal{O}_{X}(1)}^{G, \alpha}(v) \cong M_{\mathcal{O}_{X}(1)}^{G, \alpha}(w)$, where $w=v+\left\langle v, v\left(E_{i j}\right)\right\rangle v\left(E_{i j}\right)$.

Proof. (1) For $E \in M_{\mathcal{O}_{X}(1)}^{G, \alpha}(v)$, we set $n:=\operatorname{dim} \operatorname{Hom}\left(E, E_{i j}\right)$. Then we have a surjective morphism $\phi: E \rightarrow$ $E_{i j}^{\oplus n}$. Then $F:=\operatorname{ker} \phi$ is α-stable. Since $-2 \leq\left\langle v(F)^{2}\right\rangle=\left\langle v(E)^{2}\right\rangle-2 n\left(n+\left\langle v, v\left(E_{i j}\right)\right\rangle\right), n=-\left\langle v, v\left(E_{i j}\right)\right\rangle$ or $n=0$.
(2) If $-\left\langle v, v\left(E_{i j}\right)\right\rangle>0$, then $\operatorname{dim} \operatorname{Hom}\left(E, E_{i j}\right)=-\left\langle v, v\left(E_{i j}\right)\right\rangle$, $\operatorname{Ext}^{p}\left(E, E_{i j}\right)=0, p>0$, and we have a morphism $\sigma: M_{\mathcal{O}_{X}(1)}^{G, \alpha}(v) \rightarrow M_{\mathcal{O}_{X}(1)}^{G, \alpha}(w)$. Conversely for $F \in M_{\mathcal{O}_{X}(1)}^{G, \alpha}(w),\left\langle v(F), v\left(E_{i j}\right)\right\rangle=-\left\langle v, v\left(E_{i j}\right)\right\rangle>0$. Hence $\operatorname{Hom}\left(F, E_{i j}\right)=0$, which implies that $\operatorname{dim} \operatorname{Ext}^{1}\left(E_{i j}, F\right)=\left\langle v(F), v\left(E_{i j}\right)\right\rangle$ and the universal extension gives an α-stable object E with $v(E)=v$. Therefore we also have the inverse of σ.

We come to the main result of this subsection.
Theorem 2.2.17. (cf. O-Y Thm. 0.1])
(1) $X^{0} \cong Y$ and the singular points $p_{1}, p_{2}, \ldots, p_{n}$ of X^{0} correspond to the S-equivalence classes of properly 0-twisted semi-stable objects.
(2) Assume that α satisfies that $(\alpha, D) \neq 0$ for all $D \in \operatorname{NS}(X)$ with $\left(D^{2}\right)=-2$ and $\left(c_{1}\left(\mathcal{O}_{X}(1)\right), D\right)=0$. Then $X^{\alpha}=M_{\mathcal{O}_{X}(1)}^{G, \alpha}\left(\varrho_{X}\right)$. In particular $\pi_{\alpha}: X^{\alpha} \rightarrow X^{0}$ is the minimal resolution of the singularities.
(3) Let $\oplus_{j=0}^{s_{i}} E_{i j}^{\oplus a_{i j}}$ be the S-equivalence class corresponding to p_{i}. Then the matrix $\left(-\left\langle v\left(E_{i j}\right), v\left(E_{i k}\right)\right\rangle\right)_{j, k \geq 0}$ is of affine type $\tilde{A}, \tilde{D}, \tilde{E}$. Assume that $a_{i 0}=1$. Then the singularity of X^{0} at p_{i} is a rational double point of type A, D, E according as the type of the matrix $\left(-\left\langle v\left(E_{i j}\right), v\left(E_{i k}\right)\right\rangle\right)_{j, k \geq 1}$.
Proof. (1) By Proposition 2.2.10, $X^{0} \cong Y$. Since $\varphi: X \rightarrow X^{0}$ is surjective, $y \in Y$ corresponds to the S-equivalence class of $\mathbb{C}_{x}, x \in \pi^{-1}(y)$. By Lemma 2.2.9, $\mathbb{C}_{x}, x \in \pi^{-1}\left(p_{i}\right)$ is not irreducible. Hence p_{i} corresponds to a properly 0 -semi-stable objects. For a smooth point $y \in Y, \mathbb{C}_{x}, x \in \pi^{-1}(y)$ is irreducible. Therefore the second claim also holds. (2) is a consequence of Proposition 2.2.2 and Lemma 2.2.11,
(3) We note that

$$
\begin{align*}
& \left\langle\varrho_{X}, v\left(E_{i j}\right)\right\rangle=0, \\
& \left\langle v\left(E_{i j}\right), v\left(E_{i j}\right)\right\rangle=-2, \tag{2.17}\\
& \left\langle v\left(E_{i j}\right), v\left(E_{k l}\right)\right\rangle \geq 0,\left(E_{i j} \neq E_{k l}\right)
\end{align*}
$$

As we see in Example 6.1.2 in appendix, we can apply Lemma 6.1.1 (1) to our situation. Hence the matrix $\left(-\left\langle v\left(E_{i j}\right), v\left(E_{i k}\right)\right\rangle\right)_{j, k \geq 0}$ is of affine type $\tilde{A}, \tilde{D}, \tilde{E}$. Then we may assume that $a_{i 0}=1$ for all i. By Lemma 6.1.1(2), we can choose an α with $-\left\langle v\left(E_{i j}\right), \alpha\right\rangle>0$ for all $j>0$. Let \mathcal{E}^{α} be the universal family on $X \times X^{\alpha}$.
(3) is a consequence of the following lemma.

Lemma 2.2.18. Assume that α satisfies $-\left\langle v\left(E_{i j}\right), \alpha\right\rangle>0$ for all $j>0$.
(1) We set

$$
\begin{equation*}
C_{i j}^{\alpha}:=\left\{x^{\alpha} \in X^{\alpha} \mid \operatorname{Hom}\left(\mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}, E_{i j}\right) \neq 0\right\}, j>0 \tag{2.18}
\end{equation*}
$$

Then $C_{i j}^{\alpha}$ is a smooth rational curve.

$$
\begin{equation*}
Z_{i}^{\alpha}=\left\{x^{\alpha} \in X^{\alpha} \mid \operatorname{Hom}\left(E_{i 0}, \mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}\right) \neq 0\right\}=\cup_{j} C_{i j}^{\alpha} \tag{2}
\end{equation*}
$$

(3) $\cup_{j} C_{i j}^{\alpha}$ is simple normal crossing and $\left(C_{i j}^{\alpha}, C_{i k}^{\alpha}\right)=\left\langle v\left(E_{i j}\right), v\left(E_{i k}\right)\right\rangle$.

Proof. (1) By our choice of $\alpha, \operatorname{Hom}\left(E_{i j}, \mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}\right)=0$ for all $x^{\alpha} \in X^{\alpha}$. If $C_{i j}^{\alpha}=\emptyset$, then $\chi\left(E_{i j}, \mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}\right)=0$ implies that $\operatorname{Hom}\left(\mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}, E_{i j}\right)=\operatorname{Ext}^{1}\left(\mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}, E_{i j}\right)=0$. Then $\Phi_{X \rightarrow X^{\alpha}}^{\mathcal{E}}\left(E_{i j}\right)=0$, which is a contradiction. Therefore $C_{i j}^{\alpha} \neq \emptyset$. In order to prove the smoothness, we consider the moduli space of coherent systems

$$
\begin{equation*}
N\left(\varrho_{X}, v\left(E_{i j}\right)\right):=\left\{(E, V) \mid E \in X^{\alpha}, V \subset \operatorname{Hom}\left(E, E_{i j}\right), \operatorname{dim}_{\mathbb{C}} V=1\right\} \tag{2.20}
\end{equation*}
$$

We have a natural projection $\iota: N\left(\varrho_{X}, v\left(E_{i j}\right)\right) \rightarrow X^{\alpha}$ whose image is $C_{i j}^{\alpha}$. For $(E, V) \in N\left(\varrho_{X}, v\left(E_{i j}\right)\right)$, we have a homomorphism $\xi: E \rightarrow E_{i j} \otimes V^{\vee}$. The Zariski tangent space at (E, V) is $\operatorname{Hom}\left(E, E \rightarrow E_{i j} \otimes V^{\vee}\right)$. By

Lemma 2.2.15 (3), ξ is surjective and $\operatorname{ker} \xi \in M_{\mathcal{O}_{X}(1)}^{G, \alpha}\left(\varrho_{X}-v\left(E_{i j}\right)\right)$. In particular $\operatorname{Hom}\left(E, E \rightarrow E_{i j} \otimes V^{\vee}\right) \cong$ $\operatorname{Ext}^{1}(E, \operatorname{ker} \xi)$. Conversely for $F \in M_{\mathcal{O}_{X}(1)}^{G, \alpha}\left(\varrho_{X}-v\left(E_{i j}\right)\right)$ and a non-trivial extension

$$
\begin{equation*}
0 \rightarrow F \rightarrow E \rightarrow E_{i j} \rightarrow 0 \tag{2.21}
\end{equation*}
$$

Lemma 2.2.15 (4) implies that $E \in X^{\alpha}$ and $E \rightarrow E_{i j}$ defines an element of $N\left(\varrho_{X}, v\left(E_{i j}\right)\right)$. By Corollary 2.2.16 (1) and our choice of $\alpha, \operatorname{Hom}\left(F, E_{i j}\right)=\operatorname{Hom}\left(E_{i j}, F\right)=0$. Hence $\operatorname{dim} \operatorname{Ext}^{1}\left(E_{i j}, F\right)=2$. Since $M_{\mathcal{O}_{X}(1)}^{G, \alpha}\left(\varrho_{X}-v\left(E_{i j}\right)\right)$ is a reduced one point, we see that $N\left(\varrho_{X}, v\left(E_{i j}\right)\right)$ is isomorphic to \mathbb{P}^{1}. We show that $\iota: N\left(\varrho_{X}, v\left(E_{i j}\right)\right) \rightarrow X^{\alpha}$ is a closed immersion. For $(E, V) \in N\left(\varrho_{X}, v\left(E_{i j}\right)\right)$, $\operatorname{dim} \operatorname{Hom}\left(E, E_{i j}\right)=$ $\operatorname{dim} \operatorname{Hom}\left(\operatorname{ker} \xi, E_{i j}\right)+1=1$. Hence ι is injective. We also see that $\iota_{*}: \operatorname{Ext}^{1}(E, \operatorname{ker} \xi) \rightarrow \operatorname{Ext}^{1}(E, E)$ is injective. Therefore ι is a closed immersion.
(2) By our choice of $\alpha, \operatorname{Hom}\left(E_{i 0}, \mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}\right) \neq 0$ for $x^{\alpha} \in Z_{i}^{\alpha}$. Conversely if $\operatorname{Hom}\left(E_{i 0}, \mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}\right) \neq 0$, then Lemma 2.2.8 implies that $\operatorname{Supp}\left(\pi_{*}\left(G^{\vee} \otimes \mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}\right)\right)=\left\{p_{i}\right\}$. Since $\operatorname{Supp}\left(\pi_{*}\left(G^{\vee} \otimes \mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}\right)\right)$ depends only on the S-equivalence class of $\mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}$, we have $\psi\left(\pi_{\alpha}\left(x^{\alpha}\right)\right)=p_{i}$. Thus $x^{\alpha} \in Z_{i}^{\alpha}$. Therefore we have the first equality. By the choice of α, we also get $Z_{i}^{\alpha} \subset \cup_{j} C_{i j}^{\alpha}$. If $\operatorname{Hom}\left(\mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}, E_{i j}\right) \neq 0, j>0$, then we see that $\operatorname{Supp}\left(\pi_{*}\left(G^{\vee} \otimes \mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}\right)\right)=\left\{p_{i}\right\}$, which implies that $x^{\alpha} \in Z_{i}^{\alpha}$. Thus the second claim also holds.
(3) Since $\left(-\left\langle v\left(E_{i j}\right), v\left(E_{i k}\right)\right\rangle\right)_{j, k \geq 1}$ is of ADE-type, by using Corollary2.2.16. we can show that $M_{\mathcal{O}_{X}(1)}^{G, \alpha}(v) \cong$ $M_{\mathcal{O}_{X}(1)}^{G, \alpha}\left(v\left(E_{i 0}\right)\right)$ for $v=v\left(E_{i 0} \oplus \oplus_{j>0} E_{i j}^{\oplus b_{j}}\right), 0 \leq b_{j} \leq a_{i j}$ with $\left\langle v^{2}\right\rangle=-2$. In particular, they are non-empty. Then by a similar arguments in O-Y, Prop. 2.9], we can also show that $\cup_{j} C_{i j}^{\alpha}$ is simple normal crossing and $\left(C_{i j}^{\alpha}, C_{i k}^{\alpha}\right)=\left\langle v\left(E_{i j}\right), v\left(E_{i k}\right)\right\rangle$. For another proof, see Corollary 2.3.12,
2.3. Fourier-Mukai transforms on X. We keep the notations in subsection[2.2, Assume that X^{α} consists of α-stable objects. Let \mathcal{E}^{α} be a universal family on $X \times X^{\alpha}$. We have an equivalence $\Phi_{X \rightarrow X^{\alpha}}^{\left(\mathcal{E}^{\alpha}\right)^{\vee}}: \mathbf{D}(X) \rightarrow$ $\mathbf{D}\left(X^{\alpha}\right)$. If \mathcal{F}^{α} be another universal family, then we see that

$$
\begin{equation*}
\Phi_{X \rightarrow X^{\alpha}}^{\left(\mathcal{E}^{\alpha}\right)^{\vee}} \circ \Phi_{X^{\alpha} \rightarrow X}^{\mathcal{F}^{\alpha}}=\Phi_{X^{\alpha} \rightarrow X^{\alpha}}^{\mathcal{O}_{\Delta}^{(L)}}[-2], L \in \operatorname{Pic}\left(X^{\alpha}\right) \tag{2.22}
\end{equation*}
$$

Let Γ^{α} be the closure of the graph of the rational map $\pi_{\alpha}^{-1} \circ \pi$:

Lemma 2.3.1. (1) We may assume that $\mathcal{E}_{\mid X \times\left(X^{\alpha} \backslash Z^{\alpha}\right)}^{\alpha} \cong \mathcal{O}_{\Gamma^{\alpha} \mid X \times\left(X^{\alpha} \backslash Z^{\alpha}\right)}$.
(2) \mathcal{E}^{α} is characterized by $\mathcal{E}_{\mid X \times\left(X^{\alpha} \backslash Z^{\alpha}\right)}^{\alpha}$ and $\operatorname{det} \Phi_{X \rightarrow X^{\alpha}}^{\left(\mathcal{E}^{\alpha}\right)^{\vee}}(G)$.

Proof. (1) We note that $\mathcal{E}_{\mid X \times\left(X^{\alpha} \backslash Z^{\alpha}\right)}^{\alpha} \cong\left(\mathcal{O}_{\Gamma^{\alpha}} \otimes p_{X^{\alpha}}^{*}(L)\right)_{\mid X \times\left(X^{\alpha} \backslash Z^{\alpha}\right)}$, where $L \in \operatorname{Pic}\left(X^{\alpha} \backslash Z^{\alpha}\right)$. We also denote an extension of L to X^{α} by L. Then $\mathcal{E}^{\alpha} \otimes p_{X^{\alpha}}^{*}\left(L^{\vee}\right)$ is a desired universal family.
(2) Assume that $\mathcal{E}_{\mid X \times\left(X^{\alpha} \backslash Z^{\alpha}\right)}^{\alpha} \cong\left(\mathcal{E}^{\alpha} \otimes p_{X^{\alpha}}^{*}(L)\right)_{\mid X \times\left(X^{\alpha} \backslash Z^{\alpha}\right)}$ and $\operatorname{det} \Phi_{X \rightarrow X^{\alpha}}^{\left(\mathcal{E}^{\alpha}\right)^{\vee}}(G) \cong \operatorname{det} \Phi_{X \rightarrow X^{\alpha}}^{\left(\mathcal{E}^{\alpha} \otimes p_{X}^{*}(L)\right)^{\vee}}(G)$.

Then $L_{\mid X^{\alpha} \backslash Z^{\alpha}} \cong \mathcal{O}_{X^{\alpha} \backslash Z^{\alpha}}$ and $L^{\otimes \operatorname{rk} G} \cong \mathcal{O}_{X^{\alpha}}$. In order to prove $L \cong \mathcal{O}_{X^{\alpha}}$, it is sufficient to prove the injectivity of the restriction map

$$
\begin{equation*}
r: \operatorname{Pic}\left(X^{\alpha}\right) \rightarrow \operatorname{Pic}\left(X^{\alpha} \backslash Z^{\alpha}\right) \times \prod_{i, j} \operatorname{Pic}\left(C_{i j}^{\alpha}\right) \tag{2.24}
\end{equation*}
$$

If $L_{\mid X^{\alpha} \backslash Z^{\alpha}} \cong \mathcal{O}_{X^{\alpha} \backslash Z^{\alpha}}$, then we can write $L=\mathcal{O}_{X}\left(\sum_{i, j} r_{i j} C_{i j}^{\alpha}\right)$. Since the intersection matrix $\left(\left(C_{i j}^{\alpha}, C_{i k}^{\alpha}\right)\right)_{j, k}$ is negative definite, $\operatorname{deg}\left(L_{\mid C_{i j}^{\alpha}}\right)=\sum_{k} r_{i k}\left(C_{i k}^{\alpha}, C_{i j}^{\alpha}\right)=0$ for all i, j implies that $r_{i j}=0$ for all i, j. Thus r is injective.
Definition 2.3.2. We set $\Lambda^{\alpha}:=\Phi_{X \rightarrow X^{\alpha}}^{\left(\mathcal{E}^{\alpha}\right)^{\vee}}[2]$.
Lemma 2.3.3. $\mathcal{O}_{X}(n) \otimes_{_}$and Λ^{α} are commutative.
Proof. Let D be an effective divisor on X such that $D \cap Z=\emptyset$. It is sufficient to prove that

$$
\begin{equation*}
\mathcal{E}^{\alpha} \otimes\left(\mathcal{O}_{X}(-D) \boxtimes \mathcal{O}_{X^{\alpha}}(D)\right) \cong \mathcal{E}^{\alpha} \tag{2.25}
\end{equation*}
$$

We note that $\mathcal{E}^{\alpha} \cong \mathcal{O}_{\Gamma^{\alpha}}$ over $X^{\alpha} \backslash Z^{\alpha}$. Obviously the claim holds over $X^{\alpha} \backslash Z^{\alpha}$. By Lemma 2.3.1] we shall show that $\operatorname{det} \Lambda^{\alpha}(G(D)) \cong \operatorname{det}\left(\Lambda^{\alpha}(G)(D)\right)$. We have an exact triangle

$$
\begin{equation*}
\left(\mathcal{E}^{\alpha}\right)^{\vee} \rightarrow\left(\mathcal{E}^{\alpha}\right)^{\vee}(D) \rightarrow\left(\mathcal{E}^{\alpha}\right)_{\mid D}^{\vee}(D) \rightarrow\left(\mathcal{E}^{\alpha}\right)^{\vee}[1] \tag{2.26}
\end{equation*}
$$

Since $\left(\mathcal{E}^{\alpha}\right)_{\mid D}^{\vee}(D) \cong \mathcal{O}_{\Delta \mid D}(D)[-2]$, we have an exact triangle

$$
\begin{equation*}
\Lambda^{\alpha}(G) \rightarrow \Lambda^{\alpha}(G(D)) \rightarrow G_{\mid D}(D) \rightarrow \Lambda^{\alpha}(G)[1] \tag{2.27}
\end{equation*}
$$

Hence we get $\operatorname{det} \Lambda^{\alpha}(G(D)) \cong\left(\operatorname{det} \Lambda^{\alpha}(G)\right)((\operatorname{rk} G) D) \cong \operatorname{det}\left(\Lambda^{\alpha}(G)(D)\right)$.

Proposition 2.3.4. (1) $G^{\alpha}:=\Lambda^{\alpha}(G)$ is a locally free sheaf and $\mathbf{R} \pi_{\alpha *}\left(G^{\alpha \vee} \otimes G^{\alpha}\right)=\pi_{\alpha *}\left(G^{\alpha \vee} \otimes G^{\alpha}\right)$.
(2) $\Lambda^{\alpha}\left(E_{i j}\right)[j]$ is a sheaf, where $j=-1$ or 0 according as $\left(\alpha, c_{1}\left(E_{i j}\right)\right)<0$ or $\left(\alpha, c_{1}\left(E_{i j}\right)\right)>0$.
(3) We set $\mathcal{A}^{\alpha}:=\pi_{\alpha *}\left(G^{\alpha \vee} \otimes G^{\alpha}\right)$. Then \mathcal{A}^{α} is a reflexive sheaf on Y. Under the identification $X^{\alpha} \backslash Z^{\alpha} \cong X \backslash Z, G_{\mid X^{\alpha} \backslash Z^{\alpha}}^{\alpha}$ corresponds to $G_{\mid X \backslash Z}$. Hence we have an isomorphism $\mathcal{A} \cong \mathcal{A}^{\alpha}$.
(4) We identify $\operatorname{Coh}_{\mathcal{A}}(Y)$ with $\operatorname{Coh}_{\mathcal{A}^{\alpha}}(Y)$ via $\mathcal{A} \cong \mathcal{A}^{\alpha}$. Then we have a commutative diagram

In particular G^{α} gives a local projective generator of $\Lambda^{\alpha}(\mathcal{C})$.
(5) We set

$$
\begin{align*}
& S^{\alpha}:=\left\{\Lambda^{\alpha}\left(E_{i j}\right)[-1] \mid i, j\right\} \cap \operatorname{Coh}\left(X^{\alpha}\right) \\
& \mathcal{T}^{\alpha}:=\left\{E \in \operatorname{Coh}\left(X^{\alpha}\right) \mid \operatorname{Hom}(E, c)=0, c \in S^{\alpha}\right\} \tag{2.29}\\
& \mathcal{S}^{\alpha}:=\left\{E \in \operatorname{Coh}\left(X^{\alpha}\right) \mid E \text { is a successive extension of subsheaves of } c \in S^{\alpha}\right\} .
\end{align*}
$$

Then $\left(\mathcal{T}^{\alpha}, \mathcal{S}^{\alpha}\right)$ is a torsion pair of $\operatorname{Coh}\left(X^{\alpha}\right)$ and $\Lambda^{\alpha}(\mathcal{C})$ is the tilting of $\operatorname{Coh}\left(X^{\alpha}\right)$ with respect to $\left(\mathcal{T}^{\alpha}, \mathcal{S}^{\alpha}\right)$.
(6) Let G^{\prime} be a local projective generator of \mathcal{C}. Then Λ^{α} induces an isomorphism $\mathcal{M}_{H}^{G^{\prime}}(v)^{s s} \rightarrow \mathcal{M}_{H}^{\Lambda^{\alpha}\left(G^{\prime}\right)}\left(\Lambda^{\alpha}(v)\right)^{s s}$.

Proof. (1) We note that $\operatorname{Hom}\left(\mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}^{\alpha}, G[i]\right) \cong \operatorname{Hom}\left(G, \mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}^{\alpha}[2-i]\right)^{\vee}=0$ for $i \neq 2$ and $x^{\alpha} \in X^{\alpha}$. By the base change theorem, G^{α} is a locally free sheaf. By using Lemma 2.3 .3 and the ampleness of $\mathcal{O}_{Y}(1)$, we have

$$
\begin{align*}
H^{0}\left(Y, R^{i} \pi_{\alpha *}\left(G^{\alpha \vee} \otimes G^{\alpha}\right)(n)\right) & =\operatorname{Hom}\left(\Lambda^{\alpha}(G), \Lambda^{\alpha}(G)(n)[i]\right) \\
& =\operatorname{Hom}\left(\Lambda^{\alpha}(G), \Lambda^{\alpha}(G(n))[i]\right) \tag{2.30}\\
& =\operatorname{Hom}(G, G(n)[i])=H^{0}\left(Y, R^{i} \pi_{*}\left(G^{\vee} \otimes G\right)(n)\right)=0
\end{align*}
$$

for $n \gg 0$ and $i \neq 0$. Therefore $R^{i} \pi_{*}\left(G^{\alpha \vee} \otimes G^{\alpha}\right)=0, i \neq 0$ and the claim holds.
(2) If $\left(\alpha, c_{1}\left(E_{i j}\right)\right)<0$, then $\operatorname{Hom}\left(\mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}^{\alpha}, E_{i j}[2]\right) \cong \operatorname{Hom}\left(E_{i j}, \mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}^{\alpha}\right)^{\vee}=0$ for $x^{\alpha} \in X^{\alpha}$. Since $\operatorname{Hom}\left(\mathcal{E}_{X \times \mid\left\{x^{\alpha}\right\}}^{\alpha}, E_{i j}\right)=0$ if $x^{\alpha} \notin Z_{i}^{\alpha}$, we see that $\Lambda^{\alpha}\left(E_{i j}\right)[-1]$ is a torsion sheaf whose support is contained in Z_{i}^{α}.

If $\left(\alpha, c_{1}\left(E_{i j}\right)\right)>0$, then $\operatorname{Hom}\left(\mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}^{\alpha}, E_{i j}\right)=0$ for $x^{\alpha} \in X^{\alpha}$. Since $\operatorname{Hom}\left(\mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}^{\alpha}, E_{i j}[2]\right)=0$ if $x^{\alpha} \notin Z_{i}^{\alpha}$, we see that $\Lambda^{\alpha}\left(E_{i j}\right)$ is a torsion sheaf whose support is contained in Z_{i}^{α}.
(3) By the claim (1) and [E], Lem. 2.1], \mathcal{A}^{α} is a reflexive sheaf. Since \mathcal{E}^{α} is isomorphic to $\mathcal{O}_{\Gamma^{\alpha}}$ over $X^{\alpha} \backslash Z^{\alpha}$, we get $\Lambda^{\alpha}(G)_{\mid X^{\alpha} \backslash Z^{\alpha}} \cong \pi_{\alpha}^{-1} \circ \pi\left(G_{\mid X \backslash Z}\right)$. Hence the second claim also follows.
(4) For $E \in \mathcal{C}$, we first prove that $\mathbf{R} \pi_{*}\left(G^{\alpha \vee} \otimes \Lambda^{\alpha}(E)\right) \in \operatorname{Coh}_{\mathcal{A}^{\alpha}}(Y)$. As in the proof of (1), we have

$$
\begin{align*}
H^{i}\left(Y, \mathbf{R} \pi_{*}\left(G^{\alpha \vee} \otimes \Lambda^{\alpha}(E)\right)(n)\right) & =\operatorname{Hom}\left(G^{\alpha}, \Lambda^{\alpha}(E)(n)[i]\right) \\
& =\operatorname{Hom}(G, E(n)[i])=0 \tag{2.31}
\end{align*}
$$

for $i \neq 0, n \gg 0$. Therefore $H^{i}\left(\mathbf{R} \pi_{*}\left(G^{\alpha \vee} \otimes \Lambda^{\alpha}(E)\right)\right)=0$ for $i \neq 0$. For $E \in \mathcal{C}$, we take an exact sequence

$$
\begin{equation*}
G(-m)^{\oplus M} \rightarrow G(-n)^{\oplus N} \rightarrow E \rightarrow 0 \tag{2.32}
\end{equation*}
$$

Then we have a diagram

which is commutative over $Y^{*}:=Y \backslash\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, where ϕ and ψ are the isomorphisms induced by $\mathcal{A} \cong \mathcal{A}^{\alpha}$. Let $j: Y^{*} \hookrightarrow Y$ be the inclusion. Since $\mathcal{H o m}\left(\mathcal{A}, \mathcal{A}^{\alpha}\right) \rightarrow j_{*} j^{*} \mathcal{H o m}\left(\mathcal{A}, \mathcal{A}^{\alpha}\right)$ is an isomorphism, (2.33) is commutative, which induces an isomorphism $\xi: \pi_{*}\left(G^{\vee} \otimes E\right) \rightarrow \pi_{*}\left(G^{\alpha \vee} \otimes \Lambda^{\alpha}(E)\right)$. It is easy to see that the construction of ξ is functorial and defines an isomorphism $\mathbf{R} \pi_{*} \mathcal{H o m}(G,) \cong \mathbf{R} \pi_{*} \mathcal{H o m}\left(G^{\alpha}, \quad\right) \circ \Lambda^{\alpha}$.
(5) Since Λ^{α} is an equivalence, $\Lambda^{\alpha}\left(E_{i j}\right)$ are irreducible objects of $\Lambda^{\alpha}(\mathcal{C})$. By Lemma 1.1.7 and Proposition 1.1.19 we get the claim.
(6) We note that the proof of (1) implies that $\Lambda^{\alpha}\left(G^{\prime}\right)$ is a local projective generator of $\Lambda^{\alpha}(\mathcal{C})$. By Lemma 2.3.3 $\chi\left(G^{\prime}, E(n)\right)=\chi\left(\Lambda^{\alpha}\left(G^{\prime}\right), \Lambda^{\alpha}(E)(n)\right)$. Hence the claim holds.

Remark 2.3.5. If $\mathcal{C}={ }^{-1} \operatorname{Per}(X / Y)$, then $\mathcal{O}_{X} \in^{-1} \operatorname{Per}(X / Y)$ and $\Lambda^{\alpha}\left(\mathcal{O}_{X}\right)$ is a line bundle on X^{α}. Hence we may assume that $\Lambda^{\alpha}\left(\mathcal{O}_{X}\right) \cong \mathcal{O}_{X^{\alpha}}$. Then $\operatorname{Hom}\left(\mathcal{O}_{X^{\alpha}}, \Lambda^{\alpha}\left(\mathcal{O}_{C_{i j}}(-1)\right)[n]\right)=0$ for all n. Thus $\Lambda^{\alpha}\left(\mathcal{O}_{C_{i j}}(-1)\right)[n]$ is a successive extensions of $\mathcal{O}_{C_{i k}}(-1)$. We also get $\operatorname{Hom}\left(\mathcal{O}_{X^{\alpha}}, \Lambda^{\alpha}\left(\mathcal{O}_{Z_{i}}\right)\right)=\mathbb{C}$ and $\operatorname{Hom}\left(\mathcal{O}_{X^{\alpha}}, \Lambda^{\alpha}\left(\mathcal{O}_{Z_{i}}\right)[n]\right)=$ 0 for $n \neq 0$.

Since Λ^{α} is an equivalence with $\Lambda^{\alpha}\left(\varrho_{X}\right)=\varrho_{X^{\alpha}}$, we have the following corollary.
Corollary 2.3.6. For a general α, the equivalence

$$
\Lambda^{\alpha}: \mathcal{C} \rightarrow \Lambda^{\alpha}(\mathcal{C})
$$

induces an isomorphism:

$$
\Lambda^{\alpha}: \mathcal{M}_{\mathcal{O}_{X}(1)}^{G, \beta}\left(\varrho_{X}\right)^{s s} \rightarrow \mathcal{M}_{\mathcal{O}_{X^{\alpha}(1)}}^{G^{\alpha}, \Lambda^{\alpha}(\beta)}\left(\varrho_{X^{\alpha}}\right)^{s s}
$$

where $\beta \in \varrho^{\perp} \frac{1}{X}$.
2.3.1. Wall and chambers. For the 0 -stable objects $E_{i j}$ in Theorem 2.2.17, we set $v_{i j}:=v\left(E_{i j}\right)$. By Lemma 2.2.5. $\left\{E_{i j}\right\}$ is the set of irreducible objects E with $\operatorname{Supp}(E) \subset \cup_{i} Z_{i}$. Let \mathfrak{g}_{i} be the finite Lie algebra whose Cartan matrix is $\left(-\left\langle v_{i j}, v_{i k}\right\rangle_{j, k \geq 1}\right)$ and

$$
\begin{equation*}
R_{i}:=\left\{u=\sum_{j>0} n_{i j}^{\prime} v_{i j} \mid\left\langle u^{2}\right\rangle=-2, n_{i j}^{\prime} \geq 0\right\} \tag{2.34}
\end{equation*}
$$

Then R_{i} is identified with the set of positive roots of \mathfrak{g}_{i}. In particular, R_{i} is a finite set.
Definition 2.3.7. For $u \in \cup_{i} R_{i}$, we define the wall as

$$
\begin{equation*}
W_{u}:=\left\{\alpha \in \operatorname{NS}(X) \otimes \mathbb{R} \left\lvert\, \frac{\langle u, \alpha\rangle}{\langle u, v(G)\rangle}=\frac{\langle v, \alpha\rangle}{\langle v, v(G)\rangle}\right.\right\} \tag{2.35}
\end{equation*}
$$

A connected component of $\operatorname{NS}(X) \otimes \mathbb{R} \backslash \cup_{u} W_{u}$ is called a chamber.
Remark 2.3.8. If $v=\varrho_{X}$, then $W_{u}=u^{\perp}$.
Lemma 2.3.9. Let v be the Mukai vector of a 0 -dimensional object E, which is primitive.
(1) $\bar{M}_{\mathcal{O}_{X(1)}}^{G, \alpha}(v)$ consists of α-twisted stable objects if and only if $\alpha \notin \cup_{u} W_{u}$. We say that α is general with respect to v.
(2) If α is general with respect to v, then the virtual Hodge number of $M_{\mathcal{O}_{X}(1)}^{G, \alpha}(v)$ does not depend on the choice of α. In particular, the non-emptyness of $M_{\mathcal{O}_{X}(1)}^{G, \alpha}(v)$ does not depend on the choice of α.
Proof. (1) For $E \in \bar{M}_{\mathcal{O}_{X}(1)}^{G, \alpha}(v)$, we assume that E is S-equivalent to $\oplus_{i=1}^{n} E_{i}$. If $\left\langle v\left(E_{i}\right)^{2}\right\rangle=0$ for all i, then $v\left(E_{i}\right) \in \mathbb{Z}_{>0} \varrho_{X}$. Hence $v=\sum_{i=1}^{n} v\left(E_{i}\right)$ is not primitive. Therefore we may assume that $\left\langle v\left(E_{1}\right)^{2}\right\rangle=-2$. By the α-stability of $E_{1}, \operatorname{Supp}\left(E_{1}\right) \subset Z_{i}$ for an i. Since E_{1} is generated by $\left\{E_{i j} \mid 0 \leq j \leq s_{i}\right\}, v\left(E_{1}\right) \in \oplus_{j=0}^{s_{i}} \mathbb{Z}_{\geq 0} v_{i j}$. Then we see that $v\left(E_{1}\right) \in \pm R_{i}+\mathbb{Z} \varrho_{X}$. Therefore the claim holds. (2) The proof is similar to that of Y3, Prop. 2.6].

Lemma 2.3.10. (1) Let $w_{1}:=v_{i 0}+\sum_{j=1}^{s_{i}} n_{i j} v_{i j}, n_{i j} \geq 0$ be a Mukai vector with $\left\langle w_{1}^{2}\right\rangle \geq-2$. Then there is an α-twisted stable object E with $v(E)=w_{1}$ for a general α.
(2) Let $w_{2} \in R_{i}$ be a non-zero Mukai vector. Then there is an α-twisted stable object E with $v(E)=w_{2}$ for a general α.

Proof. (1) By Proposition 2.3 .16 below, we may assume that $\mathcal{C}=\operatorname{Per}\left(X^{\prime} / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$. The claim follows from Lemme 2.3.19 below and Lemma 2.3.9 (2). Instead of using Lemma 2.3.19 we can also use Corollary 2.2.16 to show the claim for a special α.
(2) We set $w_{1}:=\sum_{j=0}^{s_{i}} a_{i j} v_{i j}-w_{2}$. Then w_{1} is the Mukai vector in (1). We can take a general element $\alpha \in \operatorname{NS}(X) \otimes \mathbb{Q}$ such that $\left\langle\alpha, w_{1}\right\rangle=0$. Then α is general with respect to w_{1} and we have a α-twisted stable object E with $v(E)=w_{1}$. We consider $X^{\alpha^{\prime}}$ such that α^{\prime} is sufficiently close to α and $\left\langle\alpha^{\prime}, v(E)\right\rangle>0$. Since $\Lambda^{\alpha^{\prime}}$ is an equivalence, there is a morphism $\phi: E \rightarrow \mathcal{E}_{\mid\{y\} \times X}^{\alpha^{\prime}}$, where $y \in X^{\alpha^{\prime}}$. By our choice of α, coker ϕ is an α-twisted stable object with $v(\operatorname{coker} \phi)=w_{2}$. Then the claim follows from Lemma 2.3.9 (2).
2.3.2. A special chamber. We take $\alpha \in \varrho_{X}^{\perp}$ with $-\left\langle v\left(E_{i j}\right), \alpha\right\rangle>0, j>0$.

Lemma 2.3.11. $\Lambda^{\alpha}\left(E_{i j}\right)[-1], j>0$ is a line bundle on $C_{i j}^{\alpha}$. We set $\Lambda^{\alpha}\left(E_{i j}\right):=\mathcal{O}_{C_{i j}^{\alpha}}\left(b_{i j}^{\alpha}\right)[1]$.

Proof. We note that $\Lambda^{\alpha}\left(E_{i j}\right) \stackrel{\mathbf{L}}{\otimes} \mathbb{C}_{x^{\alpha}}=\mathbf{R} \operatorname{Hom}\left(\mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}^{\alpha}, E_{i j}[2]\right)$. Then $H^{k}\left(\Lambda\left(E_{i j}\right) \stackrel{\mathbf{L}}{\otimes} \mathbb{C}_{x^{\alpha}}\right)=0$ for $k \neq$ $-1,-2$. Hence $H^{k}\left(\Lambda^{\alpha}\left(E_{i j}\right)\right)=0$ for $k \neq-1,-2$ and $H^{-2}\left(\Lambda^{\alpha}\left(E_{i j}\right)\right)$ is a locally free sheaf. By the proof of Theorem 2.2.17 (3), $\operatorname{Supp}\left(H^{k}\left(\Lambda^{\alpha}\left(E_{i j}\right)\right)\right) \subset C_{i j}^{\alpha}$ for all k. Hence $H^{-2}\left(\Lambda^{\alpha}\left(E_{i j}\right)\right)=0$, which implies that $\Lambda^{\alpha}\left(E_{i j}\right)[-1] \in \operatorname{Coh}\left(X^{\alpha}\right)$. Since $\operatorname{Hom}\left(\mathbb{C}_{x^{\alpha}}, \Lambda^{\alpha}\left(E_{i j}\right)[-1]\right)=\operatorname{Hom}\left(\mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}^{\alpha}, E_{i j}[-1]\right)=0, \Lambda^{\alpha}\left(E_{i j}\right)[-1]$ is purely 1-dimensional. We set $C:=\operatorname{Div}\left(\Lambda^{\alpha}\left(E_{i j}\right)[-1]\right)$. Then $\left(C^{2}\right)=\left\langle v\left(\Lambda^{\alpha}\left(E_{i j}\right)[-1]\right)^{2}\right\rangle=\left\langle v\left(E_{i j}\right)^{2}\right\rangle=-2$, which implies that $C=C_{i j}^{\alpha}$. Therefore $\Lambda^{\alpha}\left(E_{i j}\right)[-1]$ is a line bundle on $C_{i j}^{\alpha}$.

Corollary 2.3 .12 .
 (1) $\left(C_{i j}^{\alpha}, C_{i^{\prime} j^{\prime}}^{\alpha}\right)=\left\langle v\left(E_{i j}\right), v\left(E_{i^{\prime} j^{\prime}}\right)\right\rangle$.

(2) $\left\{C_{i j}^{\alpha}\right\}$ is a simple normal crossing divisor.

Proof. (1) By Lemma 2.3.11, $\left(C_{i j}^{\alpha}, C_{i^{\prime} j^{\prime}}^{\alpha}\right)=\left\langle v\left(\Lambda^{\alpha}\left(E_{i j}\right)\right), v\left(\Lambda^{\alpha}\left(E_{i^{\prime} j^{\prime}}\right)\right)\right\rangle=\left\langle v\left(E_{i j}\right), v\left(E_{i^{\prime} j^{\prime}}\right)\right\rangle$. Then (2) also follows.
$E_{i 0}$ is a subobject of $\mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}}$ for $x^{\alpha} \in Z_{i}^{\alpha}$ and we have an exact sequence

$$
\begin{equation*}
0 \rightarrow E_{i 0} \rightarrow \mathcal{E}_{\mid X \times\left\{x^{\alpha}\right\}} \rightarrow F \rightarrow 0, x^{\alpha} \in Z_{i}^{\alpha} \tag{2.36}
\end{equation*}
$$

where F is a 0 -semi-stable object with $\operatorname{gr}(F)=\oplus_{j=1}^{s_{i}} E_{i j}^{\oplus a_{i j}}$. Then we get an exact sequence

$$
\begin{equation*}
0 \rightarrow \Lambda^{\alpha}(F)[-1] \rightarrow \Lambda^{\alpha}\left(E_{i 0}\right) \rightarrow \mathbb{C}_{x^{\alpha}} \rightarrow 0 \tag{2.37}
\end{equation*}
$$

in $\operatorname{Coh}\left(X^{\alpha}\right)$. Thus $\Lambda^{\alpha}\left(E_{i 0}\right) \in \operatorname{Coh}\left(X^{\alpha}\right)$.
Definition 2.3.13. We set $A_{i 0}^{\alpha}:=\Lambda^{\alpha}\left(E_{i 0}\right)$ and $A_{i j}^{\alpha}:=\Lambda^{\alpha}\left(E_{i j}\right)=\mathcal{O}_{C_{i j}^{\alpha}}\left(b_{i j}^{\alpha}\right)[1]$ for $j>0$.
Lemma 2.3.14. (1) $\operatorname{Hom}\left(A_{i 0}^{\alpha}, A_{i j}^{\alpha}[-1]\right)=\operatorname{Ext}^{1}\left(A_{i 0}^{\alpha}, A_{i j}^{\alpha}[-1]\right)=0$.
(2) We set $\mathbf{b}_{i}^{\alpha}:=\left(b_{i 1}^{\alpha}, b_{i 2}^{\alpha}, \ldots, b_{i s_{i}}^{\alpha}\right)$. Then $A_{i 0}^{\alpha} \cong A_{0}\left(\mathbf{b}_{i}^{\alpha}\right)$. In particular, $\operatorname{Hom}\left(A_{i 0}^{\alpha}, \mathbb{C}_{x^{\alpha}}\right)=\mathbb{C}$ for $x^{\alpha} \in Z_{i}^{\alpha}$.
Proof. (1) We have

$$
\begin{align*}
\operatorname{Hom}\left(A_{i 0}^{\alpha}, A_{i j}^{\alpha}[k]\right) & =\operatorname{Hom}\left(\Lambda^{\alpha}\left(E_{i 0}\right), \Lambda^{\alpha}\left(E_{i j}\right)[k]\right) \\
& =\operatorname{Hom}\left(E_{i 0}, E_{i j}[k]\right)=0 \tag{2.38}
\end{align*}
$$

for $k=-1,0$.
(2) By (2.37) and (1), we can apply Lemma 1.2 .18 and get $A_{i 0}^{\alpha}=A_{0}\left(\mathbf{b}_{i}^{\alpha}\right)=A_{p_{i}}$.

Remark 2.3.15. Assume that $\alpha \in v_{0}^{\perp}$ satisfies $-\left\langle v\left(E_{i j}\right), \alpha\right\rangle<0, j>0$. Then $\Phi\left(E_{i j}\right)[2]=\mathcal{O}_{C_{i j}^{\alpha}}\left(b_{i j}^{\prime \prime}\right), j>0$ and $\Phi\left(E_{i 0}\right)[2]=A_{0}\left(\mathbf{b}_{i}^{\prime \prime}\right)[1]$ belong to $\operatorname{Per}\left(X^{\alpha} / Y, \mathbf{b}_{1}^{\prime \prime}, \ldots, \mathbf{b}_{n}^{\prime \prime}\right)^{*}$, where $\mathbf{b}_{i}^{\prime \prime}:=\left(b_{i 1}^{\prime \prime}, \ldots, b_{i s_{i}}^{\prime \prime}\right)$.

By Proposition 2.3.4 we have the following result.
Proposition 2.3.16. If $-\left\langle\alpha, v\left(E_{i j}\right)\right\rangle>0$ for all $j>0$, then Λ^{α} induces an equivalence

$$
\mathcal{C} \rightarrow \operatorname{Per}\left(X^{\alpha} / Y, \mathbf{b}_{1}^{\alpha}, \ldots, \mathbf{b}_{n}^{\alpha}\right)
$$

where $\mathbf{b}_{i}^{\alpha}=\left(b_{i 1}^{\alpha}, \ldots, b_{i s_{i}}^{\alpha}\right)$.
Proposition 2.3.17. Assume that there is a $\beta \in \varrho_{X}^{\perp}$ such that \mathbb{C}_{x} are β-stable for all $x \in X$.
(1) We set $\mathcal{F}:=\mathcal{E}^{\alpha \vee}[2]$. Then we have an isomorphism

$$
\begin{align*}
X & \rightarrow & M_{\mathcal{O}_{X^{\alpha}(1)}^{G^{\alpha}}, \Lambda^{\alpha}(\beta)}^{G^{\alpha}}\left(\varrho_{X^{\alpha}}\right)=\left(X^{\alpha}\right)^{\Lambda^{\alpha}(\beta)} \\
x & \mapsto & \mathcal{F} \otimes \mathbb{C}_{x} . \tag{2.39}
\end{align*}
$$

Since $\Phi_{X^{\alpha} \rightarrow X}^{\mathcal{F}^{\vee}[2]}=\Phi_{X^{\alpha} \rightarrow X}^{\mathcal{E}^{\alpha}}$, we have $\mathcal{C}=\Phi_{X^{\alpha} \rightarrow X}^{\mathcal{F}^{\vee}[2]}\left(\operatorname{Per}\left(X^{\alpha} / Y, \mathbf{b}_{1}^{\alpha}, \ldots, \mathbf{b}_{n}^{\alpha}\right)\right)$.
(2) We also have an isomorphism

$$
\begin{array}{rlc}
X & \rightarrow & M_{\mathcal{O}_{X^{\alpha}(1)}^{\left(G^{\alpha}\right)},-D_{X^{\alpha} \circ \Lambda^{\alpha}(\beta)}^{(\beta)}\left(\varrho_{X^{\alpha}}\right)} \\
x & \mapsto & \mathcal{E}^{\alpha} \stackrel{\mathbf{L}}{\otimes} \mathbb{C}_{x}, \tag{2.40}
\end{array}
$$

where $M_{\mathcal{O}_{X^{\alpha}}(1)}^{\left(G^{\alpha}\right)^{\vee},-D_{X^{\alpha}} \circ \Lambda^{\alpha}(\beta)}\left(\varrho_{X^{\alpha}}\right)$ is the moduli of stable objects of $\Lambda^{\alpha}(\mathcal{C})^{D}$.
Thus X and X^{α} are Fourier-Mukai dual.
Proof. (1) is a consequence of Corollary2.3.6. (2) is a consequence of (1) and the isomorphism $\mathcal{M}_{\mathcal{O}_{X^{\alpha}(1)}^{G^{\alpha}, \gamma}\left(\varrho_{X^{\alpha}}\right)^{s s} \rightarrow}$ $\mathcal{M}_{\mathcal{O}_{X^{\alpha}}(1)}^{\left(G^{\alpha}\right)^{\vee},-D_{X^{\alpha}}(\gamma)}\left(\varrho_{X^{\alpha}}\right)^{s s}$ defined by $E \mapsto D_{X^{\alpha}}(E)[2]$.

The following proposition explains the condition of the stability of \mathbb{C}_{x}.
Proposition 2.3.18. $\mathcal{C}=\Lambda^{\gamma}\left(\operatorname{Per}\left(X^{\prime} / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)\right)$ with $X=\left(X^{\prime}\right)^{\gamma}$ if and only if there is a $\beta \in \varrho_{X}^{\perp}$ such that \mathbb{C}_{x} are β-stable for all $x \in X$.

Proof. For $X=\left(X^{\prime}\right)^{\gamma}, \gamma$-stability of $\mathcal{E}_{\mid X^{\prime} \times\{x\}}^{\gamma}$ and Corollary 2.3 .6 imply the β-stability of \mathbb{C}_{x}, where $\beta:=$ $\Lambda^{\gamma}(\gamma)$. Conversely if \mathbb{C}_{x} are β-stable for all $x \in X$, then Proposition 2.3 .17 (1) implies the claim, where $X^{\prime}:=X^{\alpha}$ and $\gamma:=\Lambda^{\alpha}(\beta)$.

We give two examples of \mathcal{C} satisfying the stability condition of \mathbb{C}_{x}.
Lemma 2.3.19. (1) Assume that $\mathcal{C}=\operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$. If $-\left\langle\alpha, v\left(\mathcal{O}_{C_{i j}}\left(b_{i j}\right)[1]\right)\right\rangle>0$ for all $j>0$, then $X \cong X^{\alpha}$ by sending $x \in X$ to $\mathbb{C}_{x} \in X^{\alpha}$. Moreover $A_{p_{i}} \otimes \mathcal{O}_{C}$ such that \mathcal{O}_{C} is a purely 1-dimensional $\mathcal{O}_{Z_{i}}$-module with $\chi\left(\mathcal{O}_{C}\right)=1$ are α-stable.
(2) Assume that $\mathcal{C}=\operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)^{*}$. If $-\left\langle\alpha, v\left(\mathcal{O}_{C_{i j}}\left(b_{i j}\right)\right)\right\rangle<0$ for all $j>0$, then $X \cong X^{\alpha}$ by sending $x \in X$ to $\mathbb{C}_{x} \in X^{\alpha}$.

Proof. We only prove (1). Since $\mathbb{C}_{x}, x \in X \backslash \cup_{i=1}^{n} Z_{i}$ is irreducible, it is α-twisted stable for any α. For $x \in Z_{i}$, assume that there is an exact sequence

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow \mathbb{C}_{x} \rightarrow E_{2} \rightarrow 0 \tag{2.41}
\end{equation*}
$$

such that $E_{1} \neq 0, E_{2} \neq 0$ and $-\left\langle\alpha, v\left(E_{1}\right)\right\rangle=\chi\left(v^{-1}(\alpha), E_{1}\right) \geq 0$. We note that $-\left\langle\alpha, v\left(E_{i j}\right)\right\rangle>0$ for all $j>0$. Since $\left\langle\alpha, \varrho_{X}\right\rangle=0,\left\langle\alpha, v\left(A_{0}\left(\mathbf{b}_{i}\right)\right)\right\rangle=-\sum_{j>0} a_{i j}\left\langle\alpha, v\left(E_{i j}\right)\right\rangle$. As a 0 -semi-stable object, E_{1} is S-equivalent to $\oplus_{j>0} \mathcal{O}_{C_{i j}}\left(b_{i j}\right)[1]^{\oplus a_{i j}^{\prime}}, a_{i j}^{\prime} \leq a_{i j}$. Since $\operatorname{Hom}\left(\mathcal{O}_{C_{i j}}\left(b_{i j}\right)[1], \mathbb{C}_{x}\right)=0$, this is impossible. Therefore \mathbb{C}_{x} is α twisted stable. Then we have an injective morphism $\phi: X \rightarrow X^{\alpha}$ by sending $x \in X$ to \mathbb{C}_{x}. By using the Fourier-Mukai transform $\Phi_{X \rightarrow X}^{\mathcal{O}}{ }_{X}^{\text {® }}: \mathbf{D}(X) \rightarrow \mathbf{D}(X)$, we see that ϕ is surjective. Since both spaces are smooth, ϕ is an isomorphism. The last claim also follows by a similar argument.
2.3.3. Relation with the twist functor S-T]. Let F be a spherical object of $\mathbf{D}(X)$ and set

$$
\begin{equation*}
\mathcal{E}:=\operatorname{Cone}\left(F^{\vee} \boxtimes F \rightarrow \mathcal{O}_{\Delta}\right)[1] \tag{2.42}
\end{equation*}
$$

Then $T_{F}:=\Phi_{X \rightarrow X}^{\mathcal{E}}$ is an autoequivalence of $\mathbf{D}(X)$.
Lemma 2.3.20. Let $\Pi: \mathbf{D}(X) \rightarrow \mathbf{D}(Y)$ be a Fourier-Mukai transform. Then

$$
\begin{equation*}
\Pi \circ T_{F} \cong T_{\Pi(F)} \circ \Pi \tag{2.43}
\end{equation*}
$$

Proof. Let $\mathbf{E} \in \mathbf{D}(X \times Y)$ be an object such that $\Pi=\Phi_{X \rightarrow Y}^{\mathrm{E}}$. It is sufficient to prove $\Pi(\mathcal{E}) \cong T_{\Pi(F)}(\mathbf{E})$. We set $X_{i}:=X, i=1,2$. We note that $F^{\vee} \cong \operatorname{Hom}_{p}\left(\mathcal{O}_{X_{1}} \boxtimes F, \mathcal{O}_{\Delta}\right)$, where $p: X_{1} \times X_{2} \rightarrow X_{1}$ is the projection and $\Delta \subset X_{1} \times X_{2}$ the diagonal. Then

$$
\begin{equation*}
\mathcal{E} \cong \operatorname{Cone}\left(\operatorname{Hom}_{p}\left(\mathcal{O}_{X_{1}} \boxtimes F, \mathcal{O}_{\Delta}\right) \boxtimes F \rightarrow \mathcal{O}_{\Delta}\right)[1] \tag{2.44}
\end{equation*}
$$

Let $p_{X_{2}}: Y \times X_{2} \rightarrow X_{2}, p_{Y}: Y \times X_{2} \rightarrow Y$ and $q: X_{1} \times Y \rightarrow X_{1}$ be the projections. We have a morphism

$$
\begin{align*}
& \operatorname{Hom}_{p}\left(\mathcal{O}_{X_{1}} \boxtimes F, \mathcal{O}_{\Delta}\right) \rightarrow \operatorname{Hom}_{q^{\prime}}\left(\mathcal{O}_{X_{1}} \boxtimes\left(\mathbf{E} \otimes p_{X_{2}}^{*}(F)\right),\left(\mathcal{O}_{X_{1}} \boxtimes \mathbf{E}\right)_{\mid \Delta^{\prime}}\right) \tag{2.45}\\
& \rightarrow \operatorname{Hom}_{q}\left(\mathcal{O}_{X_{1}} \boxtimes \mathbf{R} p_{Y *}\left(\mathbf{E} \otimes p_{X_{2}}^{*}(F)\right), \mathbf{E}\right),
\end{align*}
$$

where $\Delta^{\prime}=\Delta \times Y$ and $q^{\prime}: X_{1} \times Y \times X_{2} \rightarrow X_{1}$ is the projection. We also have a commutative diagram in $\mathbf{D}\left(Y \times X_{1}\right):$

Since Π is an equivalence, γ is an isomorphism. Since $\Pi(\mathcal{E}) \cong \operatorname{Cone}(\alpha)[1]$ and $T_{\Pi(F)}(\mathbf{E}) \cong \operatorname{Cone}(\beta)[1]$, we get $\Pi(\mathcal{E}) \cong T_{\Pi(F)}(\mathbf{E})$.

Corollary 2.3.21. Assume that $\operatorname{Supp}\left(H^{i}(F)\right) \subset Z$ for all i. Let D be the pull-back of a divisor on Y. Then $T_{F}(E(D)) \cong T_{F}(E)(D)$.

Proof. We apply Lemma 2.3 .20 to $\Pi=\Phi_{X \rightarrow X}^{\mathcal{O}(D)}$. Since $\Pi(F) \cong F$, we get our claim.
Proposition 2.3.22. Assume that $G^{\vee} \otimes G$ satisfies $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0$. Assume that $G^{\prime}:=T_{F}(G)$ is a locally free sheaf up to shift.
(1) $\mathbf{R}^{1} \pi_{*}\left(G^{\prime \vee} \otimes G^{\prime}\right)=0$ and $\pi_{*}\left(G^{\prime \vee} \otimes G^{\prime}\right) \cong \pi_{*}\left(G^{\vee} \otimes G\right)$.
(2) We set $\mathcal{A}^{\prime}:=\pi_{*}\left(G^{\vee} \otimes G^{\prime}\right)$. We identify $\operatorname{Coh}_{\mathcal{A}}(Y)$ with $\operatorname{Coh}_{\mathcal{A}^{\prime}}(Y)$ via $\mathcal{A} \cong \mathcal{A}^{\prime}$. Then we have a commutative diagram

$$
\begin{align*}
& \operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right) \stackrel{T_{F}}{\longrightarrow} \\
& T_{F}\left(\operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)\right) \tag{2.47}\\
& \mathbf{R} \pi_{*} \mathcal{H} \operatorname{Hom}(G,) \mid \downarrow^{\mid} \pi_{*} \mathcal{H o m}\left(G^{\prime},\right) \\
& \operatorname{Coh}_{\mathcal{A}}(Y)=\operatorname{Coh}_{\mathcal{A}^{\prime}}(Y)
\end{align*}
$$

Proof. The proof is almost the same as that of Proposition 2.3.4.
Definition 2.3.23. For an $\alpha \in H^{\perp} \otimes \mathbb{Q}, \mathcal{X}^{\alpha}$ denotes the moduli stack of α-semi-stable objects E of \mathcal{C} such that $v(E)=\varrho_{X}$.

For an $\alpha \in H^{\perp} \otimes \mathbb{Q}$, let F be an α-stable object such that (i) $\left\langle v(F)^{2}\right\rangle=-2$ and (ii) $\langle\alpha, v(F)\rangle=0$. By (i), F is a spherical object. By the same proof of [O-Y, Prop. 1.12], we have the following result.

Proposition 2.3.24. We set $\alpha^{ \pm}:= \pm \epsilon v(F)+\alpha$, where $0<\epsilon \ll 1$. Then T_{F} induces an isomorphism

$$
\begin{array}{rlcc}
\mathcal{X}^{\alpha^{-}} & \rightarrow & \mathcal{X}^{\alpha^{+}} \\
E & \mapsto & T_{F}(E) \tag{2.48}
\end{array}
$$

which preserves the S-equivalence classes. Hence we have an isomorphism

$$
\begin{equation*}
X^{\alpha^{-}} \rightarrow X^{\alpha^{+}} \tag{2.49}
\end{equation*}
$$

Combining Proposition 2.3 .24 with Lemma 2.3.20 we get the following corollary.
Corollary 2.3.25. Assume that α belongs to exactly one wall defined by F. Then T_{F} induces an isomorphism $X^{\alpha^{-}} \rightarrow X^{\alpha^{+}}$. Under this isomorphism, we have

$$
\begin{equation*}
\Phi_{X^{\alpha^{-}} \rightarrow X}^{\mathcal{E}^{\alpha+}} \cong T_{F} \circ \Phi_{X^{\alpha^{-}} \rightarrow X}^{\mathcal{E}^{\alpha^{-}}} \cong \Phi_{X^{\alpha^{-}} \rightarrow X}^{\mathcal{E}^{\alpha^{-}}} \circ T_{A}, \tag{2.50}
\end{equation*}
$$

where $A:=\Phi_{X \rightarrow X^{\alpha}}^{\left(\mathcal{E}^{\alpha^{-}}\right)^{\vee}[2]}(F)$.
2.4. Construction of a local projective generator. We return to the general situation in section 2.1, We shall construct local projective generators for $\operatorname{Per}\left(X / Y,\left\{L_{i j}\right\}\right)$.

Proposition 2.4.1. Let β be a 2-cocycle of \mathcal{O}_{X}^{\times}defining a torsion element of $H^{2}\left(X, \mathcal{O}_{X}^{\times}\right)$. Assume that $E \in K^{\beta}(X)$ satisfies

$$
\begin{align*}
0 \leq & -\chi\left(E, L_{i j}\right), 1 \leq j \leq s_{i} \\
& -\sum_{j} a_{i j} \chi\left(E, L_{i j}\right) \leq r \tag{2.51}
\end{align*}
$$

for all i.
(1) There is a locally free β-twisted sheaf G on X such that $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0, \mathbf{R} \pi_{*}\left(G^{\vee} \otimes F\right) \in \operatorname{Coh}(Y)$ for $F \in \operatorname{Per}\left(X / Y,\left\{L_{i j}\right\}\right), G$ is μ-stable and $\tau(G)=\tau(E)-n \tau\left(\mathbb{C}_{x}\right), n \gg 0$.
(2) There is a locally free β-twisted sheaf G on X such that $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0, \mathbf{R} \pi_{*}\left(G^{\vee} \otimes F\right) \in \operatorname{Coh}(Y)$ for $F \in \operatorname{Per}\left(X / Y,\left\{L_{i j}\right\}\right)$ and $\tau(G)=2 \tau(E)$.
(3) Moreover if the inequalities in (2.51) are strict, then G in (1) and (2) are local projective generators of $\operatorname{Per}\left(X / Y,\left\{L_{i j}\right\}\right)$.
Corollary 2.4.2. Assume that $(r, \xi) \in \mathbb{Z}_{>0} \oplus \operatorname{NS}(X)$ satisfies

$$
\begin{align*}
& 0<\left(\xi, C_{i j}\right)-r\left(b_{i j}+1\right), 1 \leq j \leq s_{i} \\
& \sum_{j} a_{i j}\left(\xi, C_{i j}\right)-r \sum_{j} a_{i j}\left(b_{i j}+1\right)<r \tag{2.52}
\end{align*}
$$

for all i.
(1) For any sufficiently large n, there is a local projective generator G of $\operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ such that G is a μ-stable sheaf with respect to H and $\left(\operatorname{rk} G, c_{1}(G), c_{2}(G)\right)=\left(r, \xi, c_{2}\right)$.
(2) For any $\mathbf{e} \in K(X)_{\text {top }}$ with (rke, $\left.c_{1}(\mathbf{e})\right)=(r, \xi)$, there is a local projective generator G such that $\tau(G)=2 \mathbf{e}$.

Proof of Proposition 2.4.1.
(1) We assume that H is represented by a smooth connected curve with $Z \cap H=\emptyset$, where $Z=\sum_{i=1}^{n} Z_{i}$. We take a torsion free sheaf E such that $\operatorname{Ext}^{2}(E, E(-Z-H))_{0}=0$. By the construction of E, we may assume that E is locally free on $Z \cup H$. We consider the restriction morphism of the local deformation spaces

$$
\begin{equation*}
\phi: \operatorname{Def}(X, E) \rightarrow \operatorname{Def}\left(Z, E_{\mid Z}\right) \times \operatorname{Def}\left(H, E_{\mid H}\right) \tag{2.53}
\end{equation*}
$$

Then $\operatorname{Def}(X, E)$ and $\operatorname{Def}\left(Z, E_{\mid Z}\right) \times \operatorname{Def}\left(H, E_{\mid H}\right)$ are smooth, and ϕ is submersive. In particular, by using Lemma 2.4.3 below, we see that E deforms to a locally free β-twisted sheaf G such that G is μ-stable with respect to H and $\operatorname{Hom}\left(G, L_{i j}\right)=\operatorname{Ext}^{1}\left(G, A_{p_{i}}\right)=0$ for all i, j. By Remark 1.1.23, Proposition 2.4.1(1) holds.
(2) By (1), we have locally free sheaves $E_{i}, i=1,2$ such that $R^{1} \pi_{*}\left(E_{i}^{\vee} \otimes E_{i}\right)=0, \mathbf{R} \pi_{*}\left(G_{i}^{\vee} \otimes F\right) \in \operatorname{Coh}(Y)$ for $F \in \operatorname{Per}\left(X / Y,\left\{L_{i j}\right\}\right), \tau\left(E_{i}\right)=\tau(E)-n_{i} \tau\left(\mathbb{C}_{x}\right)$ and $n_{1}+n_{2}=n^{2}\left(H^{2}\right)$ rk E. Then $G=E_{1}(n H) \oplus E_{2}(-n H)$ satisfies the claim.
(3) The claim follows from Proposition 1.1.22,

Lemma 2.4.3. (1) $E_{\mid Z}$ deforms to a locally free β-twisted sheaf such that

$$
\begin{equation*}
H^{0}\left(C_{i j}, E^{\vee} \otimes L_{i j}\right)=H^{1}\left(Z_{i}, E^{\vee} \otimes A_{p_{i}}\right)=0 \tag{2.54}
\end{equation*}
$$

for all i, j.
(2) $E_{\mid H}$ deforms to a μ-stable locally free β-twisted sheaf on H.

Proof. (1) Since $E_{\mid Z}=\oplus_{i=1}^{n} E_{\mid Z_{i}}$, we shall prove the claims for each $E_{\mid Z_{i}}$. Since $H^{2}\left(Z, \mathcal{O}_{Z}^{\times}\right)=\{1\}$, there is a β-twisted line bundle \mathcal{L} on Z_{i} which induces an equivalence $\varphi: \operatorname{Coh}^{\beta}(Z) \cong \operatorname{Coh}(Z)$ in (1.134). Since $\operatorname{Pic}\left(Z_{i}\right) \rightarrow \mathbb{Z}^{s_{i}}\left(L \mapsto \prod_{j=1}^{s_{i}} \operatorname{deg}\left(L_{\mid C_{i j}}\right)\right)$ is an isomorphism, we may assume that $\varphi\left(L_{i j}\right)=\mathcal{O}_{C_{i j}}(-1)$. Thus we may assume that β is trivial and $L_{i j}=\mathcal{O}_{C_{i j}}(-1)$. In this case, we have $A_{p_{i}}=\mathcal{O}_{Z_{i}}$. Then we have $\operatorname{deg}\left(E_{\mid C_{i j}}\right) \geq 0$ for all $j>0$ and $\operatorname{deg}\left(E_{\mid Z_{i}}\right) \leq r$. Let D be an effective Cartier divisor on Z_{i} such that $\left(D, C_{i j}\right)=\operatorname{deg}\left(E_{\mid C_{i j}}\right)$. Then

$$
\begin{equation*}
K:=\operatorname{ker}\left(H^{0}\left(\mathcal{O}_{Z_{i} \cap D}\right) \otimes \mathcal{O}_{Z_{i}} \rightarrow \mathcal{O}_{Z_{i} \cap D}\right) \tag{2.55}
\end{equation*}
$$

is a locally free sheaf on Z_{i} such that $H^{1}\left(Z_{i}, K\right)=0$ and $H^{0}\left(C_{i j}, K_{\mid C_{i j}}(-1)\right)=0$. Since rk $K=\operatorname{dim} H^{0}\left(\mathcal{O}_{Z_{i} \cap D}\right)=$ $\operatorname{deg}_{Z_{i}}(D)=\operatorname{deg}\left(E_{\mid Z_{i}}\right) \leq r$, we set $F:=K^{\vee} \oplus \mathcal{O}_{Z_{i}}^{\oplus(\operatorname{rk} E-\mathrm{rk} K)}$. Since F is a locally free sheaf with $\left(\operatorname{rk} F, \operatorname{det}\left(F^{\vee}\right)\right)=\left(\operatorname{rk} E_{\mid Z_{i}}, \operatorname{det}\left(E_{\mid Z_{i}}\right)\right)$, we get the claim by Lemma 2.1.4 and the openness of the condition (2.54).
(2) is well-known.

Corollary 2.4.4. Assume that π is the minimal resolution of rational double points p_{1}, \ldots, p_{n}. Let \mathcal{C} be the category in Lemma 1.1 .5 and $E_{i j}, 1 \leq i \leq n, 0 \leq j \leq s_{i}$ the 0-stable objects in Lemma 2.2.12 (2). For an element $E \in K(X)$ satisfying $\chi\left(E, E_{i j}\right)>0$ for all i, j, there is a local projective generator G of \mathcal{C} such that $\tau(G)=2 \tau(E)$.
Proof. We consider the equivalence Λ^{α} in Proposition 2.3.16. Then since $\chi\left(\Lambda^{\alpha}(E), \Lambda^{\alpha}\left(E_{i j}\right)\right)>0$ for all i, j, Proposition 2.4.1]implies that there is a local projective generator G^{α} of $\Lambda^{\alpha}(\mathcal{C})$ such that $\tau\left(G^{\alpha}\right)=2 \tau\left(\Lambda^{\alpha}(E)\right)$. We set $G:=\left(\Lambda^{\alpha}\right)^{-1}\left(G^{\alpha}\right) \in \mathcal{C}$. Then

$$
\begin{align*}
H^{0}\left(X, H^{k}\left(G \stackrel{\mathbf{L}}{\otimes} \mathbb{C}_{x}\right)\right) & =H^{k}\left(X, G \stackrel{\mathbf{L}}{\otimes} \mathbb{C}_{x}\right) \\
& =\operatorname{Hom}\left(\mathbb{C}_{x}, G[k+2]\right) \tag{2.56}\\
& =\operatorname{Hom}\left(\Lambda^{\alpha}\left(\mathbb{C}_{x}\right), G^{\alpha}[k+2]\right) \\
& =\operatorname{Hom}\left(G^{\alpha}, \Lambda^{\alpha}\left(\mathbb{C}_{x}\right)[-k]\right)=0
\end{align*}
$$

for all $x \in X$ and $k \neq 0$. Therefore G is a locally free sheaf on X. Since G^{α} is a local projective generator of $\Lambda^{\alpha}(\mathcal{C})$ and Λ^{α} is an equivalence, G is a local projective generator of \mathcal{C}.
2.4.1. More results on the structure of \mathcal{C}. Let \mathcal{C} be the category of perverse coherent sheaves in Lemma 1.1.5. Assume that there is $\beta \in \mathrm{NS}(X) \otimes \mathbb{Q}$ such that \mathbb{C}_{x} is β-stable for all $x \in X$. By Proposition 2.3.18, $\mathcal{C}=\Lambda^{\alpha}\left(\operatorname{Per}\left(X^{\prime} / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)\right)$. So we first assume that $\mathcal{C}=\operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ and set

$$
E_{i j}:= \begin{cases}\mathcal{O}_{C_{i j}}\left(b_{i j}\right)[1], & j>0 \tag{2.57}\\ A_{0}(\mathbf{b}), & j=0\end{cases}
$$

We set $v_{i j}:=v\left(E_{i j}\right)$. Let u_{0} be an isotropic Mukai vector such that $r_{0}:=r k u_{0}>0,\left\langle u_{0}, v_{i j}\right\rangle=0$ for all i, j. We set

$$
\begin{equation*}
L:=\mathbb{Z} u_{0}+\sum_{i=1}^{n} \sum_{j=0}^{s_{i}} \mathbb{Z} v_{i j} \tag{2.58}
\end{equation*}
$$

Then L is a sublattice of $H^{*}(X, \mathbb{Z})$ and we have a decomposition

$$
\begin{equation*}
L=\left(\mathbb{Z} u_{0} \oplus \mathbb{Z} \varrho_{X}\right) \perp\left(\oplus_{i=1}^{n} \oplus_{j=1}^{s_{i}} \mathbb{Z} v_{i j}\right) \tag{2.59}
\end{equation*}
$$

We set

$$
\begin{align*}
T_{i} & :=\oplus_{j=1}^{s_{i}} \mathbb{Z} C_{i j} \\
T & :=\oplus_{i=1}^{n} T_{i} \tag{2.60}
\end{align*}
$$

Then we have an isometry

$$
\begin{array}{cccc}
\psi: \quad \oplus_{i=1}^{n} \oplus_{j=1}^{s_{i}} \mathbb{Z} v_{i j} & \rightarrow & T \tag{2.61}\\
v & \mapsto & c_{1}(v) .
\end{array}
$$

Combining the isometry $\mathbb{Z} u_{0} \oplus \mathbb{Z} \varrho_{X} \rightarrow \mathbb{Z} r_{0} \oplus \mathbb{Z} \varrho_{X}\left(x u_{0}+z \varrho_{X} \mapsto x r_{0}+z \varrho_{X}\right)$, we also have an isometry

$$
\begin{equation*}
\widetilde{\psi}:\left(\mathbb{Z} u_{0} \oplus \mathbb{Z} \varrho_{X}\right) \perp\left(\oplus_{i=1}^{n} \oplus_{j=1}^{s_{i}} \mathbb{Z} v_{i j}\right) \rightarrow\left(\mathbb{Z} r_{0} \oplus \mathbb{Z} \varrho_{X}\right) \perp T \tag{2.62}
\end{equation*}
$$

Let \mathfrak{g}_{i} (resp. $\widehat{\mathfrak{g}}_{i}$) be the finite Lie algebra (resp. affine Lie algebra) associated to the lattice $\oplus_{j=1}^{s_{i}} \mathbb{Z} v_{i j}$ (resp. $\oplus_{j=0}^{s_{i}} \mathbb{Z} v_{i j}$). Let \mathfrak{g} (resp. $\widehat{\mathfrak{g}}$) be the Lie algebra associated to $\oplus_{i=1}^{n} \oplus_{j=1}^{s_{i}} \mathbb{Z} v_{i j}$ (resp. $\oplus_{i=1}^{n} \oplus_{j=0}^{s_{i}} \mathbb{Z} v_{i j}$).

Let $W\left(\mathfrak{g}_{i}\right)$ (resp. $\left.W(\mathfrak{g})\right)$ be the Weyl group of $\mathfrak{g}_{i}($ resp. $\mathfrak{g})$ and \mathcal{W}_{i} (resp. \mathcal{W}) the set of Weyl chambers of $W\left(\mathfrak{g}_{i}\right)($ resp. $W(\mathfrak{g}))$. Since $\mathfrak{g}=\oplus_{i=1}^{n} \mathfrak{g}_{i}, W(\mathfrak{g})=\prod_{i=1}^{n} W\left(\mathfrak{g}_{i}\right)$ and $\mathcal{W}=\prod_{i=1}^{n} \mathcal{W}_{i}$. By the action of $W(\mathfrak{g})$, $\mathbb{Q} u_{0}+\mathbb{Q} \varrho_{X}$ is fixed. Let $W\left(\widehat{\mathfrak{g}}_{i}\right)$ (resp. $W(\widehat{\mathfrak{g}})$) be the Weyl group of $\widehat{\mathfrak{g}}_{i}$ (resp. $\widehat{\mathfrak{g}}$). We have the following decompositions

$$
\begin{align*}
W\left(\widehat{\mathfrak{g}}_{i}\right) & =T_{i} \rtimes W\left(\mathfrak{g}_{i}\right), \\
W(\widehat{\mathfrak{g}}) & =T \rtimes W(\mathfrak{g}), \tag{2.63}
\end{align*}
$$

and the action of $D \in T$ on L is the multiplication by e^{D}. Indeed

$$
T_{\mathcal{O}_{C_{i j}}\left(b_{i j}+1\right)} \circ T_{\mathcal{O}_{C_{i j}}\left(b_{i j}\right)[1]}=e^{-C_{i j}}
$$

as an isometry of L.
We shall study the category $\Lambda^{\alpha}(\mathcal{C})$. We may assume that $\alpha \in \operatorname{NS}(X) \otimes \mathbb{Q}$ is $\alpha=\sum_{i} \alpha_{i}$ with $\alpha_{i} \in T_{i} \otimes \mathbb{Q}$. Via the identification ψ, we have an action of W on $T \otimes \mathbb{Q}$. We set

$$
\begin{align*}
C_{i}^{\text {fund }} & :=\left\{\alpha \in T_{i} \otimes \mathbb{R} \mid\left(\alpha, C_{i j}\right)>0,1 \leq j \leq s_{i}\right\} \\
C^{\text {fund }} & :=\prod_{i=1}^{n} C_{i}^{\text {fund }} \tag{2.64}
\end{align*}
$$

$C^{\text {fund }}$ is the fundamental Weyl chamber. If $\alpha \in C^{\text {fund }}$, then Lemma 2.3.19 implies that \mathbb{C}_{x} is α-stable for all $x \in X$. By the action of $W\left(\mathfrak{g}_{i}\right)$, we have $\mathcal{W}_{i}=W\left(\mathfrak{g}_{i}\right) C_{i}^{\text {fund }}$. We also set

$$
\begin{equation*}
C_{\text {alcove }}^{\text {fund }}:=\left\{\alpha \in T \otimes \mathbb{R} \mid\left(\alpha, C_{i j}\right)>0,1 \leq j \leq s_{i},\left(\alpha, Z_{i}\right)<1\right\} \tag{2.65}
\end{equation*}
$$

By the isometry $\widetilde{\psi}^{-1}$, we have

$$
\begin{align*}
\left(\alpha, C_{i j}\right) & =-\left\langle\psi^{-1}(\alpha), v_{i j}\right\rangle \\
& =-\left\langle\left(\frac{u_{0}}{\operatorname{rk} u_{0}}+\psi^{-1}(\alpha)+\frac{\left(\alpha^{2}\right)}{2} \varrho_{X}\right), v_{i j}\right\rangle=-\left\langle e^{\frac{c_{1}\left(u_{0}\right)}{1 \mathrm{rk} u_{0}}+\alpha}, v_{i j}\right\rangle \tag{2.66}
\end{align*}
$$

for $j>0$ and $1-\left(\alpha, Z_{i}\right)=1+\sum_{j=1}^{s_{i}} a_{i j}\left\langle e^{\frac{c_{1}\left(u_{0}\right)}{\operatorname{rk} u_{0}}+\alpha}, v_{i j}\right\rangle=-\left\langle e^{\frac{c_{1}\left(u_{0}\right)}{\operatorname{rk} u_{0}}+\alpha}, v_{i 0}\right\rangle$. Hence we have

$$
\begin{equation*}
C_{\text {alcove }}^{\text {fund }}=\left\{\alpha \in T \otimes \mathbb{R} \left\lvert\,-\left\langle e^{\frac{c_{1}\left(u_{0}\right)}{\operatorname{rk} u_{0}}+\alpha}, v_{i j}\right\rangle>0\right.\right\} \tag{2.67}
\end{equation*}
$$

Applying Corollary 2.3.25 successively, we get the following result.
Proposition 2.4.5. If $\alpha \in T \otimes \mathbb{Q}$ belongs to a chamber $C=\prod_{i=1}^{n} C_{i}, C_{i} \subset T_{i} \otimes \mathbb{Q}$, then there are rigid objects $F_{1}, \ldots, F_{n} \in \mathcal{C}$ such that $X^{\alpha} \cong X$ and $\Phi_{X \rightarrow X}^{\mathcal{E}^{\alpha}}=T_{F_{n}} \circ T_{F_{n-1}} \circ \cdots \circ T_{F_{1}}$. Thus $\Lambda^{\alpha}=\left(\Phi_{X \rightarrow X}^{\mathcal{E}^{\alpha}}\right)^{-1}$ induces an isometry $w(\alpha)$ of L.

Then we have a map

$$
\begin{array}{lccc}
\phi: & \mathcal{W} & \rightarrow & W(\widehat{\mathfrak{g}}) / T \\
& C(\alpha) & \mapsto & {[w(\alpha)} \tag{2.68}\\
\bmod T]
\end{array}
$$

where $C(\alpha)$ is the chamber containing α.
Lemma 2.4.6. $\phi: \mathcal{W} \rightarrow W(\widehat{\mathfrak{g}}) / T \cong W(\mathfrak{g})$ is bijective.
Proof. There is an element α_{0} in the fundamental Weyl chamber such that $\alpha=\Phi_{X \rightarrow X}^{\mathcal{E}}\left(\alpha_{0}\right)$. Hence $w(\alpha)(C(\alpha))=C\left(\alpha_{0}\right)$. Thus ϕ is injective. Since $\# \mathcal{W}_{i}=\# W\left(\mathfrak{g}_{i}\right), \phi$ is bijective.

We set

$$
\begin{equation*}
T^{*}:=\left\{D \in T \otimes \mathbb{Q} \mid\left(D, C_{i j}\right) \in \mathbb{Z}\right\} . \tag{2.69}
\end{equation*}
$$

Then $\widetilde{W}:=T^{*} \rtimes W(\mathfrak{g})$ is the extended Weyl group. By the action of \widetilde{W}, we can change $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ to any sequence $\left(\mathbf{b}_{1}^{\prime}, \ldots, \mathbf{b}_{n}^{\prime}\right)$.

Proposition 2.4.7. Let \mathcal{C} be the category in Lemma 1.1.5 and assume that there is $\beta \in \operatorname{NS}(X) \otimes \mathbb{Q}$ such that \mathbb{C}_{x} is β-stable for all $x \in X$. Then \mathcal{C} is equivalent to ${ }^{-1} \operatorname{Per}(X / Y)$. In particular, $\operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right) \cong$ ${ }^{-1} \operatorname{Per}(X / Y)$.

Proof. We may assume that $\mathcal{C}=\operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$. We set

$$
u_{i j}:= \begin{cases}v\left(\mathcal{O}_{C_{i j}}(-1)[1]\right), & j>0 \tag{2.70}\\ v\left(\mathcal{O}_{Z_{i}}\right), & j=0\end{cases}
$$

By the theory of affine Lie algebras, there is an element $w \in W(\widehat{\mathfrak{g}})$ such that

$$
\begin{align*}
& w\left(\left\{\beta \in T \otimes \mathbb{R} \mid-\left\langle e^{\beta}, v_{i j}\right\rangle>0, i, j \geq 0\right\}\right) \\
= & \left\{\beta \in T \otimes \mathbb{R} \mid-\left\langle e^{\beta}, u_{i j}\right\rangle>0, i, j \geq 0\right\} . \tag{2.71}
\end{align*}
$$

Then we have

$$
\left\{w\left(v_{i j}\right) \mid 0 \leq j \leq s_{i}\right\}=\left\{u_{i j} \mid 0 \leq j \leq s_{i}\right\}
$$

for all i.
For each i, there is an integer j_{i} such that (1) $c_{1}\left(w\left(v_{i j_{i}}\right)\right)$ is effective and (2) $-c_{1}\left(w\left(v_{i j}\right)\right), j \neq j_{i}$ are effective. By Lemma 2.4.6, we have $w=e^{D} \phi(\alpha), D, \alpha \in T$. Since $v\left(\Lambda^{\alpha}\left(E_{i j}\right) \otimes \mathcal{O}_{X}(D)\right)=e^{D} v\left(\Lambda^{\alpha}\left(E_{i j}\right)\right)=$ $e^{D} \phi(\alpha)\left(v_{i j}\right)$, Proposition 2.3.4 (2) implies that $-\left(\alpha, c_{1}\left(E_{i j}\right)\right)>0$ unless $j=j_{i}$. By Lemma 2.2.18 and Lemma 2.3.11, $\Lambda^{\alpha}\left(E_{i j}\right)[-1], j \neq j_{i}$ is a line bundle on a smooth rational curve and $\Lambda^{\alpha}\left(E_{i j_{i}}\right)$ is a line bundle on Z_{i}. Thus

$$
\begin{align*}
\left\{\Lambda^{\alpha}\left(E_{i j}\right) \otimes \mathcal{O}_{X}(D) \mid j \neq j_{i}\right\} & =\left\{\mathcal{O}_{C_{i j}}(-1)[1] \mid 0<j \leq s_{i}\right\} \\
\Lambda^{\alpha}\left(E_{i j_{i}}\right) \otimes \mathcal{O}_{X}(D) & =\mathcal{O}_{Z_{i}} \tag{2.72}
\end{align*}
$$

By Proposition 2.3.4 (5), we get $\Lambda^{\alpha}(\mathcal{C}) \otimes \mathcal{O}_{X}(D) \cong{ }^{-1} \operatorname{Per}(X / Y)$.
Remark 2.4.8. For the derived category of coherent twisted sheaves, we also see that the equivalence classes of $\operatorname{Per}\left(X / Y,\left\{L_{i j}\right\}\right)$ does not depend on the choice of $\left\{L_{i j}\right\}$.
Proposition 2.4.9. We set $v=(r, \xi, a) \in H^{e v}(X, \mathbb{Z})_{\text {alg }}, r>0$. Assume that $(\xi, D) \notin r \mathbb{Z}$ for all $D \in T$ with $\left(D^{2}\right)=-2$. Then there is a category of perverse coherent sheaves \mathcal{C}_{v} and a locally free sheaf G on X such that G is a local projective generator of \mathcal{C}_{v} with $v(G)=2 v$. We also have a local projective generator G^{\prime} of \mathcal{C}_{v} such that G^{\prime} is μ-stable with respect to H and $v\left(G^{\prime}\right)=v-b \varrho_{X}, b \gg 0$.

Proof. We set $\mathcal{C}=\operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ and keep the notation as above. By our assumption, $\langle v, u\rangle \notin r \mathbb{Z}$ for all (-2)-vectors $u \in L$. Then there is $w \in W$ such that $v=w\left(v_{f}\right)$ and v_{f} / r belongs to the fundamental alcove, that is, $-\left\langle v_{f} / r, v_{i j}\right\rangle>0$ for all i, j. By Lemma 2.4.6, we have an element α such that $w=e^{D} \phi(\alpha)$, $D \in T$. By Proposition 2.4.1 there is a local projective generator G_{f} of \mathcal{C} such that $v\left(G_{f}\right)=2 v_{f}$. We set $\mathcal{C}_{v}:=\Lambda^{\alpha}(\mathcal{C}) \otimes \mathcal{O}_{X}(D)$. Then $G^{\alpha}:=\Lambda^{\alpha}\left(G_{f}\right)$ is a local projective generator of $\mathcal{C}_{v} \otimes \mathcal{O}_{X}(-D)$. Hence $G:=G^{\alpha}(D)$ is a local projective generator of \mathcal{C}_{v} such that $v(G)=2 v$.
2.5. Deformation of a local projective generator. Let $f:(\mathcal{X}, \mathcal{L}) \rightarrow S$ be a flat family of polarized surfaces over S. For a point $s_{0} \in S$, we set $X:=\mathcal{X}_{s_{0}}$. Let \mathcal{H} be a relative Cartier divisor on X such that $H:=\mathcal{H}_{s_{0}}$ gives a contraction $f: X \rightarrow Y$ to a normal surface Y with $\mathbf{R} \pi_{*}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{Y}$. We shall construct a family of contractions $f: \mathcal{X} \rightarrow \mathcal{Y}$ over a neighborhood of s_{0}.

Replacing H by $m H$, we may assume that $H^{i}\left(X, \mathcal{O}_{X}(m H)\right)=H^{i}\left(Y, \mathcal{O}_{Y}(m H)\right)=0$ for $m>0$. We shall find an open neighborhood S_{0} of s_{0} such that $R^{i} f_{*}\left(\mathcal{O}_{\mathcal{X}_{S_{0}}}(m \mathcal{H})\right)=0, i>0, m>0$ and $f_{*}\left(\mathcal{O}_{\mathcal{X}_{S_{0}}}(m \mathcal{H})\right)$ is locally free: We consider the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathcal{X}}(m \mathcal{H}) \rightarrow \mathcal{O}_{\mathcal{X}}((m+1) \mathcal{H}) \rightarrow \mathcal{O}_{\mathcal{H}}((m+1) \mathcal{H}) \rightarrow 0 \tag{2.73}
\end{equation*}
$$

Since $\mathcal{H} \rightarrow S$ is a flat morphism, the base change theorem implies that $R^{i} f_{*}\left(\mathcal{O}_{\mathcal{X}}(m \mathcal{H})\right) \rightarrow R^{i} f_{*}\left(\mathcal{O}_{\mathcal{X}}((m+\right.$ 1) $\mathcal{H})$) is surjective, if $(m+1)\left(H^{2}\right)>\left(H^{2}\right)+\left(H, K_{X}\right)$. We take an open neighborhood S_{0} of s_{0} such that $R^{i} f_{*}\left(\mathcal{O}_{\mathcal{X}_{S_{0}}}(m \mathcal{H})\right)=0, i>0,\left(H, K_{X}\right) /\left(H^{2}\right) \geq m>0$. Then the claim holds. We replace S by S_{0} and set $\mathcal{Y}:=\operatorname{Proj}\left(\oplus_{m} f_{*}\left(\mathcal{O}_{\mathcal{X}}(m \mathcal{H})\right)\right)$. Then \mathcal{Y} is flat over S and $\mathcal{Y}_{s_{0}} \cong Y$. By the construction, $\mathcal{Y} \rightarrow S$ is a flat family of normal surfaces.

Let $\mathcal{Z}:=\left\{x \in \mathcal{X} \mid \operatorname{dim} \pi^{-1}(\pi(x)) \geq 1\right\}$ be the exceptional locus. Then $\left\{\left(\mathcal{Z}_{s}, \mathcal{L}_{s}\right) \mid s \in S\right\}$ is a bounded set. Hence $\mathcal{D}:=\left\{D \in \operatorname{NS}\left(\mathcal{X}_{s}\right) \mid s \in S,\left(D, \mathcal{H}_{s}\right)=0\right\}$ is a finite set. Replacing S by an open neighborhood of s_{0}, we may assume that $D \in \mathcal{D}$ is a deformation of $D_{0} \in \mathrm{NS}(X)$ (i.e., D belongs to $\mathrm{NS}(X)$ via the identification $\left.H^{2}\left(\mathcal{X}_{s}, \mathbb{Z}\right) \cong H^{2}(X, \mathbb{Z})\right)$.
Lemma 2.5.1. Assume that there is a locally free sheaf G on \mathcal{X} such that $R^{1} \pi_{*}\left(G^{\vee} \otimes G\right)=0$ and $\operatorname{rk} G \nmid$ $\left(c_{1}(G)_{s_{0}}, D\right)$ for all (-2)-curves with $\left(D, \mathcal{H}_{s_{0}}\right)=0$. Then replacing S by an open neighborhood of s_{0}, we may assume that $\operatorname{rk} G \nmid\left(c_{1}(G)_{s}, D\right)$ for all (-2)-curves with $\left(D, \mathcal{H}_{s}\right)=0$. Thus G is a family of tilting generators.

As an example, we consider a family of $K 3$ surfaces. Let X be a $K 3$ surface and $\pi: X \rightarrow Y$ a contraction. Let $p_{i}, i=1,2, \ldots, n$ be the singular points and $Z_{i}:=\sum_{j} a_{i j} C_{i j}$ their fundamental cycles. Let H be the pull-back of an ample divisor on Y. Assume that $(r, \xi) \in \mathbb{Z}_{>0} \times \mathrm{NS}(X)$ satisfies $r \nmid(\xi, D)$ for all (-2)-curves D with $(D, H)=0$. By Proposition 2.4.9, there is a category of perverse coherent sheaves \mathcal{C} and a local projective generator G of \mathcal{C} such that G is μ-stable with respect to H and (rk $\left.G, c_{1}(G)\right)=(r, \xi)$. Replacing G by $G \otimes L^{\otimes m}, L \in \operatorname{Pic}(X)$ and \mathcal{C} by $\mathcal{C} \otimes L^{\otimes m}$, we assume that ξ is ample. If $(\mathbb{Q} \xi+\mathbb{Q} H) \cap H^{\perp}$ does not contain a (-2)-curve, then we have a deformation $(\mathcal{X}, \mathcal{L}) \rightarrow S$ of (X, ξ) such that \mathcal{H}_{s} is ample for a general $s \in S$. Since G is simple, replacing S by a smooth covering $S^{\prime} \rightarrow S$, we also have a deformation \mathcal{G} of G over S. By shrinking S, we may assume that \mathcal{G} is a family of tilting generators. Then we can construct a family of moduli spaces $f: \bar{M}_{(\mathcal{X}, \mathcal{H}) / S}^{\mathcal{G}}(v) \rightarrow S$ of \mathcal{G}_{s}-twisted semi-stable objects on $\mathcal{X}_{s}, s \in S$ (for the twisted cases, see Step 3, 4 of the proof of [Y4, Thm. 3.16]). By our assumption, a general fiber of f is the moduli space of \mathcal{G}_{s}-twisted semi-stable sheaves, which is non-empty by Lemma 6.2.3 Hence we get the following lemma.
Lemma 2.5.2. Assume that v is primitive and $\left\langle v^{2}\right\rangle \geq-2$. Then f is surjective. In particular, $\bar{M}_{(\mathcal{X}, \mathcal{H}) / S}^{\mathcal{G}}(v)_{s_{0}} \neq$ \emptyset.
Remark 2.5.3. We note that $R:=\left\{C \in \mathrm{NS}(X) \mid(C, H)=0,\left(C^{2}\right)=-2\right\}$ is a finite set. If $\rho(X) \geq 3$, then $\cup_{C \in R}(\mathbb{Q} H+\mathbb{Q} C)$ is a proper subset of $\operatorname{NS}(X) \otimes \mathbb{Q}$. Hence $(\mathbb{Q} \xi+\mathbb{Q} H) \cap R=\emptyset$ for a general ξ. In general, we have a deformation $(\mathcal{X}, \mathcal{L}) \rightarrow S$ of (X, ξ) such that \mathcal{G} is a family of tilting generators and $\rho\left(\mathcal{X}_{s}\right) \geq 3$ for infinitely many points $s \in S$.
Remark 2.5.4. By the usual deformation theory of objects, we note that $M_{(\mathcal{X}, \mathcal{H}) / S}^{\mathcal{G}}(v) \rightarrow S$ is a smooth morphism. If $\bar{M}_{(\mathcal{X}, \mathcal{H}) / S}^{\mathcal{G}}(v)_{s_{0}}=M_{(\mathcal{X}, \mathcal{H}) / S}^{\mathcal{G}}(v)_{s_{0}}$, then we have a smooth deformation $\bar{M}_{(\mathcal{X}, \mathcal{H}) / S}^{\mathcal{G}}(v) \rightarrow S$ of $\bar{M}_{(\mathcal{X}, \mathcal{H}) / S}^{\mathcal{G}}(v)_{s_{0}}$. In particular, $\bar{M}_{(\mathcal{X}, \mathcal{H}) / S}^{\mathcal{G}}(v)_{s_{0}}$ deforms to a usual moduli of semi-stable sheaves.
Corollary 2.5.5. Let $v_{0}=(r, \xi, a)$ be a primitive isotropic Mukai vector such that $r \chi(\xi, D)$ for all (-2)curves D with $(D, H)=0$. Let \mathcal{C} be the category in Proposition 2.4.9. Then $M_{H}^{v_{0}}\left(v_{0}\right) \neq \emptyset$.

Proof. By Lemma 2.5.2 and Remark 2.5.3, we see that $\bar{M}_{H}^{v_{0}}\left(v_{0}\right) \neq \emptyset$. By the same proof of $\cap-\mathrm{Y}$, Lem. 2.17], we see that $\bar{M}_{H}^{v_{0}+\alpha}\left(v_{0}\right) \neq \emptyset$ for a general α. Then $\bar{M}_{H}^{v_{0}+\alpha}\left(v_{0}\right)$ is a $K 3$ surface. In the same way as in the proof of $\mathrm{O}-\mathrm{Y}$, Prop. 2.11], we see that $M_{H}^{v_{0}}\left(v_{0}\right) \neq \emptyset$.

3. Fourier-Mukai transform on a $K 3$ surface.

3.1. Basic results on the moduli spaces of dimension 2. Let Y be a normal $K 3$ surface and $\pi: X \rightarrow Y$ the minimal resolution. Let $p_{1}, p_{2}, \ldots, p_{n}$ be the singular points of Y and $Z_{i}:=\pi^{-1}\left(p_{i}\right)=\sum_{j=0}^{s_{i}} a_{i j} C_{i j}$ the fundamental cycle, where $C_{i j}$ are smooth rational curves on X and $a_{i j} \in \mathbb{Z}_{>0}$. We shall study moduli of stable objects in the category \mathcal{C} in Lemma 1.1.5 satisfying the following assumption.
Assumption 3.1.1. There is a $\beta \in \varrho_{X}^{\perp} \otimes \mathbb{Q}$ such that \mathbb{C}_{x} is β-stable for all $x \in X$.
By Proposition 2.3.18, there are $\mathbf{b}_{i}:=\left(b_{i 1}, b_{i 2}, \ldots, b_{i s_{i}}\right) \in \mathbb{Z}^{\oplus s_{i}}$ and an autoequivalence $\Phi_{X \rightarrow X}^{\mathcal{F}^{\vee}[2]}: \mathbf{D}(X) \rightarrow$ $\mathbf{D}(X)$ such that $\Phi_{X \rightarrow X}^{\mathcal{F}^{\vee}[2]}(\operatorname{Per}(X / Y))=\mathcal{C}$, where $\operatorname{Per}(X / Y):=\operatorname{Per}\left(X / Y, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ and \mathcal{F} is the family of $\Phi_{X \rightarrow X}^{\mathcal{F}}(\beta)$-stable objects of $\operatorname{Per}(X / Y)$ in Proposition 2.3.18. We set

$$
A_{i j}:= \begin{cases}\Phi_{X}^{\mathcal{F}^{\vee}[2]}\left(A_{0}\left(\mathbf{b}_{i}\right)\right), & j=0 \tag{3.1}\\ \Phi_{X \rightarrow X}^{\mathcal{F}^{\vee}[2]}\left(\mathcal{O}_{C_{i j}}\left(b_{i j}\right)[1]\right), & j>0\end{cases}
$$

Throughout this section, we assume the following:
Assumption 3.1.2. $v_{0}:=r_{0}+\xi_{0}+a_{0} \varrho_{X}, r_{0}>0, \xi_{0} \in \mathrm{NS}(X)$ is a primitive isotropic Mukai vector such that $\left\langle v_{0}, v\left(A_{i j}\right)\right\rangle<0$ for all i, j.

By Corollary 2.4.4 we have the following.
Lemma 3.1.3. There is a local projective generator G of \mathcal{C} whose Mukai vector is $2 v_{0}$. More generally, for a sufficiently small $\alpha \in\left(v_{0}^{\perp} \cap \varrho_{X}^{\perp}\right) \otimes \mathbb{Q}$, there is a local projective generator G of \mathcal{C} such that $v(G) \in \mathbb{Q}>0\left(v_{0}+\alpha\right)$.

Let H be the pull-back of an ample divisor on Y. For a sufficiently small $\alpha \in\left(v_{0}^{\perp} \cap \varrho_{X}^{\perp}\right) \otimes \mathbb{Q}$, we take a local projective generator G of \mathcal{C} with $v(G) \in \mathbb{Q}>0\left(v_{0}+\alpha\right)$. We define $v_{0}+\alpha$-twisted semi-stability in a usual way. Since it is equivalent to the G-twisted semi-stability, we have the moduli space $\bar{M}_{H}^{v_{0}+\alpha}\left(v_{0}\right)$. Let $M_{H}^{v_{0}+\alpha}\left(v_{0}\right)$ be the moduli space of $v_{0}+\alpha$-stable objects. By Corollary 2.5.5, $M_{H}^{v_{0}}\left(v_{0}\right) \neq \emptyset$. Hence we see that $M_{H}^{v_{0}+\alpha}\left(v_{0}\right)$ is also non-empty. Then we have the following which is well-known for the moduli of stable sheaves on $K 3$ surfaces.

Proposition 3.1.4.
(1) $M_{H}^{v_{0}+\alpha}\left(v_{0}\right)$ is a smooth surface. If α is general, then $\bar{M}_{H}^{v_{0}+\alpha}\left(v_{0}\right)=M_{H}^{v_{0}+\alpha}\left(v_{0}\right)$ is projective.
(2) If $\bar{M}_{H}^{v_{0}+\alpha}\left(v_{0}\right)=M_{H}^{v_{0}+\alpha}\left(v_{0}\right)$, then it is a K3 surface.

For the structure of $\bar{M}_{H}^{v_{0}}\left(v_{0}\right)$, as in $\mathrm{O}-\mathrm{Y}$, we have the following.
Theorem 3.1.5. ($c f .[\mathrm{O}-\mathrm{Y}, \mathrm{Thm} .0 .1]$)
(1) $\bar{M}_{H}^{v_{0}}\left(v_{0}\right)$ is normal and the singular points $q_{1}, q_{2}, \ldots, q_{m}$ of $\bar{M}_{H}^{v_{0}}\left(v_{0}\right)$ correspond to the S-equivalence classes of properly v_{0}-twisted semi-stable objects.
(2) For a suitable choice of α with $\left|\left\langle\alpha^{2}\right\rangle\right| \ll 1$, there is a surjective morphism $\pi: \bar{M}_{H}^{v_{0}+\alpha}\left(v_{0}\right)=$ $M_{H}^{v_{0}+\alpha}\left(v_{0}\right) \rightarrow \bar{M}_{H}^{v_{0}}\left(v_{0}\right)$ which becomes a minimal resolution of the singularities.
(3) Let $\bigoplus_{j \geq 0} E_{i j}^{\oplus a_{i j}^{\prime}}$ be the S-equivalence class corresponding to q_{i}, where $E_{i j}$ are v_{0}-twisted stable objects.
(a) Then the matrix $\left(-\left\langle v\left(E_{i j}\right), v\left(E_{i k}\right)\right\rangle\right)_{j, k \geq 0}$ is of affine type $\tilde{A}, \tilde{D}, \tilde{E}$.
(b) Assume that $a_{i 0}^{\prime}=1$. Then the singularity of $\bar{M}_{H}^{v_{0}}\left(v_{0}\right)$ at q_{i} is a rational double point of type A, D, E according as the type of the matrix $\left(-\left\langle v\left(E_{i j}\right), v\left(E_{i k}\right)\right\rangle\right)_{j, k \geq 1}$.
Remark 3.1.6. A (-2)-vector $u \in L:=v_{0}^{\perp} \cap \widehat{H}^{\perp} \cap H^{*}(X, \mathbb{Z})_{\text {alg }}$ is numerically irreducible, if there is no decomposition $u=\sum_{i} b_{i} u_{i}$ such that $u_{i} \in L,\left\langle u_{i}^{2}\right\rangle=-2$, $\operatorname{rk} u>\operatorname{rk} u_{i}>0, b_{i} \in \mathbb{Z}_{>0}$. If u is numerically irreducible, as we shall see in Proposition 3.2.14, there is a v_{0}-twisted stable object E with $v(E)=u$. In particular, if there is a decomposition $v_{0}=\sum_{i \geq 0} a_{i} u_{i}$ such that $u_{i} \in L$ are numerically irreducible, $\left\langle u_{i}^{2}\right\rangle=-2, \operatorname{rk} u_{i}>0$ and $a_{i} \in \mathbb{Z}_{>0}$, then there are v_{0}-stable objects E_{i} such that $v\left(E_{i}\right)=u_{i}$, and hence $v_{0}=v\left(\oplus_{i} E_{i}^{\oplus a_{i}}\right)$. Thus the types of the singularities are determined by the sublattice L of $H^{*}(X, \mathbb{Z})$.

We shall give a proof of this theorem in subsection 3.2. We assume that $\alpha \in\left(v_{0}^{\perp} \cap \varrho_{X}^{\perp}\right) \otimes \mathbb{Q}$ is general and set $X^{\prime}:=M_{H}^{v_{0}+\alpha}\left(v_{0}\right)$. X^{\prime} is a $K 3$ surface. We have a morphism $\phi: X^{\prime} \rightarrow \bar{M}_{H}^{v_{0}}\left(v_{0}\right)$. We shall explain some cohomological properties of the Fourier-Mukai transform associated to X^{\prime}. Let \mathcal{E} be a universal family as a twisted object on $X^{\prime} \times X$. For simplicity, we assume that \mathcal{E} is an untwisted object on $X^{\prime} \times X$. But all results hold even if \mathcal{E} is a twisted object. We set

$$
\begin{align*}
& G_{1}:=\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X} \in K(X), \\
& G_{2}:=\mathcal{E}_{\mid X^{\prime} \times\{x\}}^{\vee} \in K\left(X^{\prime}\right), \tag{3.2}\\
& G_{3}:=\mathcal{E}_{\mid X^{\prime} \times\{x\}} \in K\left(X^{\prime}\right)
\end{align*}
$$

for some $x \in X$ and $x^{\prime} \in X^{\prime}$. We also set

$$
\begin{equation*}
w_{0}:=v\left(\mathcal{E}_{\mid X^{\prime} \times\{x\}}^{\vee}\right)=r_{0}+\widetilde{\xi}_{0}+\widetilde{a}_{0} \varrho_{X^{\prime}}, \widetilde{\xi}_{0} \in \mathrm{NS}\left(X^{\prime}\right) \tag{3.3}
\end{equation*}
$$

We set $\Phi^{\alpha}:=\Phi_{X \rightarrow X^{\prime}}^{\mathcal{E}}$ and $\widehat{\Phi}^{\alpha}:=\Phi_{X^{\prime} \rightarrow X}^{\mathcal{E}}$. Thus

$$
\begin{equation*}
\Phi^{\alpha}(x):=\mathbf{R} \operatorname{Hom}_{p_{X^{\prime}}}\left(\mathcal{E}, p_{X}^{*}(x)\right), x \in \mathbf{D}(X) \tag{3.4}
\end{equation*}
$$

and $\widehat{\Phi}^{\alpha}: \mathbf{D}\left(X^{\prime}\right) \rightarrow \mathbf{D}(X)$ by

$$
\begin{equation*}
\widehat{\Phi}^{\alpha}(y):=\mathbf{R} \operatorname{Hom}_{p_{X}}\left(\mathcal{E}^{\vee}, p_{X^{\prime}}^{*}(y)\right), y \in \mathbf{D}\left(X^{\prime}\right) \tag{3.5}
\end{equation*}
$$

where $\operatorname{Hom}_{p_{Z}}(-,-)=p_{Z *} \mathcal{H o m}_{\mathcal{O}_{X^{\prime} \times X}}(-,-), Z=X, X^{\prime}$ are the sheaves of relative homomorphisms.
Theorem 3.1.7 ($\widehat{\mathrm{Br} 2}, \boxed{\mathrm{O}})$. Φ^{α} is an equivalence of categories and the inverse is given by $\widehat{\Phi}^{\alpha}[2]$.
For $D \in H^{2}(X, \mathbb{Q})$, we set

$$
\begin{align*}
\widehat{D} & :=-\left[\Phi^{\alpha}\left(D+\frac{\left(D, \xi_{0}\right)}{r_{0}} \varrho_{X}\right)\right]_{1} \\
& =\left[p_{X^{\prime} *}\left(\left(c_{2}(\mathcal{E})-\frac{r_{0}-1}{2 r_{0}}\left(c_{1}(\mathcal{E})^{2}\right)\right) \cup p_{X}^{*}(D)\right)\right]_{1} \in H^{2}\left(X^{\prime}, \mathbb{Q}\right) \tag{3.6}
\end{align*}
$$

where [] 1_{1} means the projection to $H^{2}\left(X^{\prime}, \mathbb{Q}\right)$.
Lemma 3.1.8. (cf. Y5, Lem. 1.4]) $r_{0} \widehat{H}$ is a nef and big divisor on X^{\prime} which defines a contraction $\pi^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ of X^{\prime} to a normal surface Y^{\prime}. There is a morphism $\psi: Y^{\prime} \rightarrow \bar{M}_{H}^{v_{0}}\left(v_{0}\right)$ such that $\phi=\psi \circ \pi^{\prime}$.

Proof. Let G be a local projective generator of \mathcal{C} such that $\tau(G)=2 \tau\left(G_{1}\right)$ (Lemma 3.1.3). Applying Lemma 1.4.6 we have an ample line bundle $\mathcal{L}(\zeta)$ on $\bar{M}_{H}^{G}\left(v_{0}\right)=\bar{M}_{H}^{v_{0}}\left(v_{0}\right)$. By the definition of $\widehat{H}, c_{1}\left(\phi^{*}(\mathcal{L}(\zeta))\right)=r_{0} \widehat{H}$. Hence our claim holds.

Proposition 3.1.9. (cf. Y5, Prop. 1.5])
(1) Every element $v \in H^{*}(X, \mathbb{Z})$ can be uniquely written as

$$
v=l v_{0}+a \varrho_{X}+d\left(H+\frac{1}{r_{0}}\left(H, \xi_{0}\right) \varrho_{X}\right)+\left(D+\frac{1}{r_{0}}\left(D, \xi_{0}\right) \varrho_{X}\right)
$$

where

$$
\begin{aligned}
& l=\frac{\operatorname{rk} v}{\operatorname{rk} v_{0}}=-\frac{\left\langle v, \varrho_{X}\right\rangle}{\operatorname{rk} v_{0}} \in \frac{1}{r_{0}} \mathbb{Z} \\
& a=-\frac{\left\langle v, v_{0}\right\rangle}{\operatorname{rk} v_{0}} \in \frac{1}{r_{0}} \mathbb{Z} \\
& d=\frac{\operatorname{leg}_{G_{1}}(v)}{\operatorname{rk} v_{0}\left(H^{2}\right)} \in \frac{1}{r_{0}\left(H^{2}\right)} \mathbb{Z}
\end{aligned}
$$

and $D \in H^{2}(X, \mathbb{Q}) \cap H^{\perp}$. Moreover $v \in v(\mathbf{D}(X))$ if and only if $D \in \operatorname{NS}(X) \otimes \mathbb{Q} \cap H^{\perp}$.

$$
\begin{align*}
& \Phi^{\alpha}\left(l v_{0}+a \varrho_{X}+\left(d H+D+\frac{1}{r_{0}}\left(d H+D, \xi_{0}\right) \varrho_{X}\right)\right) \tag{2}\\
= & l \varrho_{X^{\prime}}+a w_{0}-\left(d \widehat{H}+\widehat{D}+\frac{1}{r_{0}}\left(d \widehat{H}+\widehat{D}, \widetilde{\xi}_{0}\right) \varrho_{X^{\prime}}\right) \tag{3.8}
\end{align*}
$$

where $D \in H^{2}(X, \mathbb{Q}) \cap H^{\perp}$.

$$
\begin{equation*}
\operatorname{deg}_{G_{1}}(v)=-\operatorname{deg}_{G_{2}}\left(\Phi^{\alpha}(v)\right) \tag{3}
\end{equation*}
$$

In particular, $\operatorname{deg}_{G_{2}}(w) \in \mathbb{Z}$ for $w \in H^{*}\left(X^{\prime}, \mathbb{Z}\right)$ and

$$
\min \left\{\operatorname{deg}_{G_{1}}(E)>0 \mid E \in K(X)\right\}=\min \left\{\operatorname{deg}_{G_{2}}(F)>0 \mid F \in K\left(X^{\prime}\right)\right\}
$$

3.2. Proof of Theorem 3.1.5, We shall choose a special α and study the structure of the moduli spaces.

We first prove the following. The normalness of $\bar{M}_{H}^{v_{0}}\left(v_{0}\right)$ will be proved in Proposition 3.2.13,
Proposition 3.2.1. (1) $\psi: Y^{\prime} \rightarrow \bar{M}_{H}^{v_{0}}\left(v_{0}\right)$ is bijective.
(2) The singular points of Y^{\prime} correspond to properly v_{0}-twisted semi-stable objects.
(3) Let $\bigoplus_{j \geq 0} E_{i j}^{\oplus a_{i j}^{\prime}}$ be the S-equivalence class of a properly v_{0}-twisted semi-stable object, where $E_{i j}$ are v_{0}-twisted stable. Then the matrix $\left(-\left\langle v\left(E_{i j}\right), v\left(E_{i k}\right)\right\rangle\right)_{j, k \geq 0}$ is of affine type $\tilde{A}, \tilde{D}, \tilde{E}$. We assume that $a_{i 0}=1$. Then $\psi^{-1}\left(\bigoplus_{j \geq 0} E_{i j}^{\oplus a_{i j}^{\prime}}\right)$ is a rational double point of type A, D, E according as the type of the matrix $\left(-\left\langle v\left(E_{i j}\right), v\left(E_{i k}\right)\right\rangle\right)_{j, k \geq 1}$.
3.2.1. Proof of Proposition 3.2.1. We note that $M_{H}^{v_{0}}\left(v_{0}\right)$ is smooth and ϕ, ψ are isomorphic over $M_{H}^{v_{0}}\left(v_{0}\right)$. Hence the singular points of Y^{\prime} are in the inverse image of $\bar{M}_{H}^{v_{0}}\left(v_{0}\right) \backslash M_{H}^{v_{0}}\left(v_{0}\right)$. Thus we may concentrate on the locus of properly v_{0}-twisted semi-stable objects. The first claim of Proposition 3.2.1 (3) follows from the following.
Lemma 3.2.2. Assume that E is S-equivalent to $\bigoplus_{j \geq 0} E_{i j}^{\oplus a_{i j}^{\prime}}$, where $E_{i j}$ are v_{0}-twisted stable objects. Then the matrix $\left(-\left\langle v\left(E_{i j}\right), v\left(E_{i k}\right)\right\rangle\right)_{j, k \geq 0}$ is of type $\widetilde{A}, \widetilde{D}, \widetilde{E}$. Moreover $\left\langle v\left(E_{i j}\right), v\left(E_{k l}\right)\right\rangle=0$, if $\bigoplus_{j \geq 0} E_{i j}^{\oplus a_{i j}^{\prime}} \neq$ $\bigoplus_{l \geq 0} E_{k l}^{\oplus a_{k l}^{\prime}}$.
Proof. Since $\operatorname{deg}_{G_{1}}(E)=\chi\left(G_{1}, E\right)=0, \operatorname{deg}_{G_{1}}\left(E_{i j}\right)=\chi\left(G_{1}, E_{i j}\right)=0$, which implies that $v\left(E_{i j}\right) \in v_{0}^{\perp} \cap \widehat{H}^{\perp}$. Since $\left(v_{0}^{\perp} \cap \widehat{H}^{\perp}\right) / \mathbb{Z} v_{0}$ is negative definite, applying Lemma 6.1.1 (1), we see that the matrix is of type $\widetilde{A}, \widetilde{D}, \widetilde{E}$. We note that $\bigoplus_{j \geq 0} E_{i j}^{\oplus a_{i j}^{\prime}} \neq \bigoplus_{l \geq 0} E_{k l}^{\oplus a_{k l}^{\prime}}$ implies that $\left\{E_{i 0}, E_{i 1}, \ldots, E_{i s_{i}^{\prime}}\right\} \neq\left\{E_{k 0}, E_{k 1}, \ldots, E_{k s_{k}^{\prime}}\right\}$. Since $\chi\left(E_{i j}, E_{k l}\right)>0$ implies that $E_{i j} \cong E_{k l},\left\{v\left(E_{i 0}\right), v\left(E_{i 1}\right), \ldots, v\left(E_{i s_{i}^{\prime}}\right)\right\} \neq\left\{v\left(E_{k 0}\right), v\left(E_{k 1}\right), \ldots, v\left(E_{k s_{k}^{\prime}}\right)\right\}$. Then the second claim follows from Lemma 6.1.1 (2).

By this lemma, we may assume that $a_{i 0}^{\prime}=1$ for all i. THen we can choose a sufficiently small $\alpha \in v_{0}^{\perp}$ such that $-\left\langle\alpha, v\left(E_{i j}\right)\right\rangle>0$ for all $j>0$. We have the following.
Lemma 3.2.3. Lemma 2.2.15 holds, if we replace ϱ_{X} by v_{0} and the α-stability by the $v_{0}+\alpha$-twisted stability.
Proof. (1) Assume that F is S-equivalent to $\bigoplus_{j \geq 0} F_{i j}^{\oplus c_{i j}}$, where $F_{i j}$ are v_{0}-twisted stable objects. If $v(F)=$ $v\left(\oplus_{j \geq 0} E_{i j}^{\oplus b_{i j}}\right), b_{i 0}=1$, then applying Lemma 3.2.2 to $\bigoplus_{j \geq 0} F_{i j}^{\oplus c_{i j}} \oplus \bigoplus_{j \geq 0} E_{i j}^{\oplus\left(a_{i j}-b_{i j}\right)}$ and $\bigoplus_{j \geq 0} E_{i j}^{\oplus a_{i j}}$, we get $\bigoplus_{j \geq 0} F_{i j}^{\oplus c_{i j}} \oplus \bigoplus_{j>0} E_{i j}^{\oplus\left(a_{i j}-b_{i j}\right)} \cong \bigoplus_{j \geq 0} E_{i j}^{\oplus a_{i j}}$, which implies the claim. Then the proofs of (2), (3) and (4) are the same.

$$
\begin{equation*}
C_{i j}^{\prime}:=\left\{x^{\prime} \in X^{\prime} \mid \operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, E_{i j}\right) \neq 0\right\}, j>0 \tag{3.9}
\end{equation*}
$$

Then $C_{i j}^{\prime}$ is a smooth rational curve.
(2)

$$
\begin{equation*}
\phi^{-1}\left(\bigoplus_{j \geq 0} E_{i j}^{\oplus a_{i j}^{\prime}}\right)=\left\{x^{\prime} \in X^{\prime} \mid \operatorname{Hom}\left(E_{i 0}, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right) \neq 0\right\}=\cup_{j} C_{i j}^{\prime} \tag{3.10}
\end{equation*}
$$

In particular, ϕ and ψ are surjective.
Proof. The proof is the same as in Lemma 2.2.18.
We also have the following lemma whose proof is the same as of Lemma 2.3.11.
Lemma 3.2.5. $\Phi^{\alpha}\left(E_{i j}\right)[1]$ is a line bundle on $C_{i j}^{\prime}$. In particular, $\left\langle v\left(E_{i j}\right), v\left(E_{k l}\right)\right\rangle=\left(C_{i j}^{\prime}, C_{k l}^{\prime}\right)$. We define $b_{i j}^{\prime}$ by $\Phi^{\alpha}\left(E_{i j}\right)=\mathcal{O}_{C_{i j}^{\prime}}\left(b_{i j}^{\prime}\right)[-1]$.

This lemma shows that the configuration of $\left\{C_{i j}^{\prime} \mid j>0\right\}$ is of type A, D, E. Since $\left(\widehat{H}, C_{i j}^{\prime}\right)=0, \cup_{j} C_{i j}^{\prime}$ is contracted to a rational double point of Y^{\prime}. Hence Proposition $3.2 .1(2)$ and (3) hold. Since $\psi^{-1}\left(\bigoplus_{j \geq 0} E_{i j}^{\oplus a_{i j}^{\prime}}\right)$ is a point, ψ is injective. Thus Proposition 3.2.1 (1) also holds.

We shall prove the normality in Proposition 3.2.13.
3.2.2. Perverse coherent sheaves on X^{\prime} and the normality of $\bar{M}_{H}^{v_{0}}\left(v_{0}\right)$. We set $Z_{i}^{\prime}:=\pi^{-1}\left(q_{i}\right)=\sum_{j=1}^{s_{i}^{\prime}} a_{i j}^{\prime} C_{i j}^{\prime}$. Then $E_{i 0}$ is a subobject of $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ for $x^{\prime} \in Z_{i}^{\prime}$ and we have an exact sequence

$$
\begin{equation*}
0 \rightarrow E_{i 0} \rightarrow \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X} \rightarrow F \rightarrow 0, x^{\prime} \in Z_{i}^{\prime} \tag{3.11}
\end{equation*}
$$

where F is a v_{0}-twisted semi-stable object with $\operatorname{gr}(F)=\oplus_{j=1}^{s_{i}^{\prime}} E_{i j}^{\oplus a_{i j}^{\prime}}$. Then we get an exact sequence

$$
\begin{equation*}
0 \rightarrow \Phi^{\alpha}(F)[1] \rightarrow \Phi^{\alpha}\left(E_{i 0}\right)[2] \rightarrow \mathbb{C}_{x^{\prime}} \rightarrow 0 \tag{3.12}
\end{equation*}
$$

in $\operatorname{Coh}\left(X^{\prime}\right)$. Thus WIT_{2} holds for $E_{i 0}$ with respect to Φ^{α}.
Definition 3.2.6. We set $A_{i 0}^{\prime}:=\Phi^{\alpha}\left(E_{i 0}\right)[2]$ and $A_{i j}^{\prime}:=\Phi^{\alpha}\left(E_{i j}\right)[2]=\mathcal{O}_{C_{i j}^{\prime}}\left(b_{i j}^{\prime}\right)[1]$ for $j>0$.
Lemma 3.2.7. (1) $\operatorname{Hom}\left(A_{i 0}^{\prime}, A_{i j}^{\prime}[-1]\right)=\operatorname{Ext}^{1}\left(A_{i 0}^{\prime}, A_{i j}^{\prime}[-1]\right)=0$.
(2) We set $\mathbf{b}_{i}^{\prime}:=\left(b_{i 1}^{\prime}, b_{i 2}^{\prime}, \ldots, b_{i s_{i}^{\prime}}^{\prime}\right)$. Then $A_{i 0}^{\prime} \cong A_{0}\left(\mathbf{b}_{i}^{\prime}\right)$. In particular, $\operatorname{Hom}\left(A_{i 0}^{\prime}, \mathbb{C}_{x^{\prime}}\right)=\mathbb{C}$ for $x^{\prime} \in Z_{i}^{\prime}$.
(3) Irreducible objects of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}, \mathbf{b}_{1}^{\prime}, \ldots, \mathbf{b}_{m}^{\prime}\right)$ are

$$
\begin{equation*}
A_{i j}^{\prime}\left(1 \leq i \leq m, 0 \leq j \leq s_{i}^{\prime}\right), \mathbb{C}_{x^{\prime}}\left(x^{\prime} \in X^{\prime} \backslash \cup_{i} Z_{i}^{\prime}\right) \tag{3.13}
\end{equation*}
$$

Proof. (1) We have

$$
\begin{align*}
\operatorname{Hom}\left(A_{i 0}^{\prime}, A_{i j}^{\prime}[k]\right) & =\operatorname{Hom}\left(\Phi^{\alpha}\left(E_{i 0}\right)[2], \Phi^{\alpha}\left(E_{i j}\right)[2+k]\right) \\
& =\operatorname{Hom}\left(E_{i 0}, E_{i j}[k]\right)=0 \tag{3.14}
\end{align*}
$$

for $k=-1,0$.
(2) By (3.12) and (1), we can apply Lemma 2.1.8 to prove $A_{i 0}^{\prime}=A_{0}\left(\mathbf{b}_{i}^{\prime}\right)=A_{q_{i}}$. (3) is a consequence of (2) and Proposition 1.2.19

Definition 3.2.8. We set

$$
\begin{align*}
& \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right): \\
&=\operatorname{Per}\left(X^{\prime} / Y^{\prime}, \mathbf{b}_{1}^{\prime}, \ldots, \mathbf{b}_{m}^{\prime}\right) \tag{3.15}\\
& \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}:=\operatorname{Per}\left(X^{\prime} / Y^{\prime},-\mathbf{b}_{1}^{\prime}+2 \mathbf{b}_{0}, \ldots,-\mathbf{b}_{m}^{\prime}+2 \mathbf{b}_{0}\right)^{*}, \mathbf{b}_{0}:=(-1,-1, \ldots,-1)
\end{align*}
$$

Remark 3.2.9. Assume that $\alpha \in v_{0}^{\perp}$ satisfies $-\left\langle v\left(E_{i j}\right), \alpha\right\rangle<0, j>0$. Then $\Phi\left(E_{i j}\right)[2]=\mathcal{O}_{C_{i j}^{\prime}}\left(b_{i j}^{\prime \prime}\right), j>0$ and $\Phi\left(E_{i 0}\right)[2]=A_{0}\left(\mathbf{b}_{i}^{\prime \prime}\right)[1]$ belong to $\operatorname{Per}\left(X^{\prime} / Y^{\prime}, \mathbf{b}_{1}^{\prime \prime}, \ldots, \mathbf{b}_{m}^{\prime \prime}\right)^{*}$, where $\mathbf{b}_{i}^{\prime \prime}=\left(b_{i 0}^{\prime \prime}, \ldots, b_{i s_{i}^{\prime}}^{\prime \prime}\right)$.

Lemma 3.2.10. There is a local projecive generator G of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ such that $\tau(G)=2 \tau\left(G_{2}\right)$. Moreover G^{\vee} is a local projective generator of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$.
Proof. Since $\chi\left(G_{2}, A_{i j}\right)=\chi\left(\mathbb{C}_{x}, E_{i j}\right)=\operatorname{rk} E_{i j}>0$, we get our claim by Proposition 2.4.1. The second claim follows from the definition of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$ and Lemma 1.1.8,

Lemma 3.2.11. Let E be an object of \mathcal{C} such that E is G_{1}-twisted stable and $\operatorname{deg}_{G_{1}}(E)=\chi\left(G_{1}, E\right)=0$. Then $E \cong E_{i j}$ or $E \cong \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, x^{\prime} \in X^{\prime} \backslash \cup_{i} Z_{i}^{\prime}$.
Proof. Since $\chi\left(G_{1}, E\right)=0$, there is a point $x^{\prime} \in X^{\prime}$ such that $\operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, E\right) \neq 0$ or $\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right) \neq$ 0 . Then E is a quotient object or a subobject of $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$, which implies the claim.

Definition 3.2.12. (1) Let $\mathcal{C}_{v_{0}}$ be the full subcategory of \mathcal{C} generated by $E_{i j}$ and $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, x^{\prime} \in X^{\prime}$. That is $\mathcal{C}_{v_{0}}$ consists of v_{0}-twisted semi-stable objects E with $\operatorname{deg}_{G_{1}}(E)=\chi\left(G_{1}, E\right)=0$.
(2) Let $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)_{0}$ be the full subcategory of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ consisting of 0-dimensional objects.

Proposition 3.2.13. (1) $\Phi^{\alpha}[2]$ induces an equivalence $\mathcal{C}_{v_{0}} \rightarrow \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)_{0}$.
(2) Moreover $\Phi^{\alpha}[2]$ induces an isomorphism $\mathcal{M}_{H}^{v_{0}+\beta}\left(v_{0}\right)^{s s} \cong \mathcal{M}_{\widehat{H}}^{G, \Phi^{\alpha}(\beta)}\left(\varrho_{X^{\prime}}\right)^{\text {ss }}$, where $\beta \in\left(v_{0}^{\perp} \cap \varrho_{X}^{\perp}\right) \otimes \mathbb{Q}$ is sufficiently small and G an arbitrary projective generator of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$.
(3) $\bar{M}_{H}^{v_{0}+\beta}\left(v_{0}\right) \cong \bar{M}_{\widehat{H}}^{G, \Phi^{\alpha}(\beta)}\left(\varrho_{X^{\prime}}\right)$. In particular, $\bar{M}_{H}^{v_{0}}\left(v_{0}\right)$ is a normal surface.

Proof. (1) We note that $\Phi^{\alpha}\left(E_{i j}\right)[2]=A_{i j}^{\prime}$ and $\Phi^{\alpha}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)[2]=\mathbb{C}_{x^{\prime}}, x^{\prime} \in X^{\prime}$. Hence the claim holds. (2) We note that $E \in \mathcal{M}_{H}^{v_{0}}\left(v_{0}\right)^{s s}$ is $v_{0}+\beta$-twisted semi-stable, if $\chi(\beta, F)=\chi\left(v_{0}+\beta, F\right) \leq 0$ for all subsheaf F of E with $\operatorname{deg}_{G_{1}}(F)=\chi\left(G_{1}, F\right)=0$. Since $\chi\left(\Phi^{\alpha}(\beta), \Phi^{\alpha}(F)\right)=\chi(\beta, F), \Phi^{\alpha}(E)[2]$ is $\left(G_{2}, \Phi^{\alpha}(\beta)\right)$-twisted semi-stable. Then Remark 1.5 .5 implies that $\Phi^{\alpha}(E)[2]$ is $\left(G, \Phi^{\alpha}(\beta)\right)$-twisted semi-stable for any G. The first claim of (3) follows from (2). In the notation of subsection 2.2, $\bar{M}_{\widehat{H}}^{G, 0}\left(\varrho_{X^{\prime}}\right) \cong\left(X^{\prime}\right)^{0}$. Hence the second claim of (3) follows from Proposition 2.2.10

Proposition 3.2.14. Let $u \in H^{e v}(X, \mathbb{Z})_{\text {alg }}$ be a Mukai vector such that $u \in v_{0}^{\perp} \cap \widehat{H} \perp, 0<\operatorname{rk} u<\operatorname{rk} v_{0}$ and $\left\langle u^{2}\right\rangle=-2$. Then $u=\sum_{j} b_{j} v\left(E_{i j}\right), 0 \leq b_{j} \leq a_{i j}$. In particular, $\bar{M}_{H}^{v_{0}}(u) \neq \emptyset$.

Proof. Since $u \in v_{0}^{\perp} \cap \widehat{H}^{\perp}, \Phi^{\alpha}(u)=(0, D, b), D \in \operatorname{NS}\left(X^{\prime}\right), b \in \mathbb{Z}$ and $(D, \widehat{H})=0$. Since $\left(D^{2}\right)=-2, D$ or $-D$ is an effective divisor supported on an exceptional locus Z_{i}^{\prime}. Hence $\Phi^{\alpha}(u) \in \oplus_{j=0}^{s_{i}^{\prime}} \mathbb{Z} \Phi^{\alpha}\left(E_{i j}\right)=\oplus_{j=1}^{s_{i}^{\prime}} \mathbb{Z} C_{i j} \oplus$ $\mathbb{Z} \varrho_{X}$. By the basic properties of the root systems of affine Lie algebra, $\Phi^{\alpha}(u)=c \Phi^{\alpha}\left(v_{0}\right) \pm \sum_{j>0} c_{j} \Phi^{\alpha}\left(E_{i j}\right)$, $0 \leq c_{j} \leq a_{i j}$. Then rk $u=c r \pm \sum_{j>0} c_{j} \mathrm{rk} E_{i j}$. Since $\sum_{j>0} c_{j} \mathrm{rk} E_{i j} \leq \sum_{j>0} a_{i j} \mathrm{rk} E_{i j}<r$, we get $u=\sum_{j>0} c_{j} v\left(E_{i j}\right)$ or $u=v_{0}-\sum_{j>0} c_{j} v\left(E_{i j}\right)$. Therefore the claim holds.
3.3. Walls and chambers for the moduli spaces of dimension 2. We shall study the dependence of $\bar{M}_{H}^{w}\left(v_{0}\right)$ on w. We set

$$
\begin{array}{clc}
\delta: \quad \mathrm{NS}(X) \otimes \mathbb{Q} & \rightarrow & H^{*}(X, \mathbb{Q}) \\
D & \mapsto & D+\frac{\left(D, \xi_{0}\right)}{r_{0}} \varrho_{X} . \tag{3.16}
\end{array}
$$

We may assume that $w=v_{0}+\alpha, \alpha \in \delta\left(H^{\perp}\right)$ (cf. O-Y, sect. 1.1]). We set

$$
\mathcal{U}:=\left\{\begin{array}{l|l}
u \in v(\mathbf{D}(X)) & \begin{array}{l}
\left\langle u^{2}\right\rangle=-2,\left\langle v_{0}, u\right\rangle \leq 0,\langle\delta(H), u\rangle=0, \\
0<\operatorname{rk} u<\operatorname{rk} v_{0}
\end{array} \tag{3.17}
\end{array}\right\} .
$$

For a fixed v_{0} and H, \mathcal{U} is a finite set. For $u \in \mathcal{U}$, we define a wall $W_{u} \subset \delta\left(H^{\perp}\right) \otimes_{\mathbb{Q}} \mathbb{R}$ with respect to v by

$$
\begin{equation*}
W_{u}:=\left\{\alpha \in \delta\left(H^{\perp}\right) \otimes \mathbb{R} \mid\left\langle v_{0}+\alpha, u\right\rangle=0\right\} \tag{3.18}
\end{equation*}
$$

A connected component of $\delta\left(H^{\perp}\right) \otimes_{\mathbb{Q}} \mathbb{R} \backslash \cup_{u \in \mathcal{U}} W_{u}$ is said to be a chamber.
Lemma 3.3.1. If α does not lie on any wall $W_{u}, u \in \mathcal{U}$, then $\bar{M}_{H}^{v_{0}+\alpha}\left(v_{0}\right)=M_{H}^{v_{0}+\alpha}\left(v_{0}\right)$. In particular, $\bar{M}_{H}^{v_{0}+\alpha}\left(v_{0}\right)$ is a K3 surface.

We are interested in the $v_{0}+\alpha$-twisted stability with a sufficiently small $\left|\left\langle\alpha^{2}\right\rangle\right|$. So we may assume that

$$
\begin{equation*}
u \in \mathcal{U}^{\prime}:=\left\{u \in \mathcal{U} \mid\left\langle v_{0}, u\right\rangle=0\right\} \tag{3.19}
\end{equation*}
$$

For an $\alpha \in \delta\left(H^{\perp}\right)$ with $\left|\left\langle\alpha^{2}\right\rangle\right| \ll 1$, let F be a $v_{0}+\alpha$-twisted stable torsion free object such that
(i) $\left\langle v(F)^{2}\right\rangle=-2$,
(ii) $\langle v(F), \delta(H)\rangle / \operatorname{rk} F=\left(c_{1}(F), H\right) / \operatorname{rk} F-\left(\xi_{0}, H\right) / r_{0}=0$ and
(iii) $\left\langle v_{0}, v(F)\right\rangle=\langle\alpha, v(F)\rangle=0$.

By (i), F is a rigid torsion free object.
Proposition 3.3.2. (O-Y Prop. 1.12]) We set $\alpha^{ \pm}:= \pm \epsilon v(F)+\alpha$, where $0<\epsilon \ll 1$. Then T_{F} induces an isomorphism

$$
\begin{array}{ccc}
\mathcal{M}_{H}^{v+\alpha^{-}}(v)^{s s} & \rightarrow & \mathcal{M}_{H}^{v+\alpha^{+}}(v)^{s s} \tag{3.20}\\
E & \mapsto & T_{F}(E)
\end{array}
$$

which preserves the S-equivalence classes. Hence we have an isomorphism

$$
\begin{equation*}
\bar{M}_{H}^{v+\alpha^{-}}(v) \rightarrow \bar{M}_{H}^{v+\alpha^{+}}(v) \tag{3.21}
\end{equation*}
$$

Remark 3.3.3. In $\mathrm{O}-\mathrm{Y}$, we considered the functor $T_{F}[-1]$.
Combining Proposition 3.3 .2 with Lemma 2.3.20, we get the following Corollary.

Corollary 3.3.4.

$$
\begin{equation*}
\Phi_{X^{\prime} \rightarrow X}^{\mathcal{E}^{v_{0}+\alpha^{+}}} \cong T_{F} \circ \Phi_{X^{\prime} \rightarrow X}^{\mathcal{E}^{v_{0}+\alpha^{-}}} \cong \Phi_{X^{\prime} \rightarrow X}^{\mathcal{E}^{v_{0}+\alpha^{-}}} \circ T_{A} \tag{3.22}
\end{equation*}
$$

where $A:=\Phi_{X \rightarrow X^{\prime}}^{\left(\mathcal{E}^{v_{0}+\alpha^{-}}\right)^{\vee}[2]}(F)$.
Assume that $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}^{v_{0}+\alpha}$ is S-equivalent to $\oplus_{i} E_{i}^{\prime \oplus a_{i}^{\prime}}$. Then $\alpha \in\left(\sum_{i} \mathbb{Q} v\left(E_{i}^{\prime}\right)\right)^{\perp}$.
Remark 3.3.5. If α belongs to exactly one wall $W_{u}, u \in \mathcal{U}$, then there is a $v+\alpha$-twisted stable object F with $v(F)=u$. So we can apply Propositions 3.3.2 Moreover $A=\mathcal{O}_{C}(b)$, where C is a smooth rational curve defined by

$$
\begin{equation*}
C:=\left\{x^{\prime} \in X^{\prime} \mid \operatorname{Ext}^{2}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}^{v_{0}+\alpha^{-}}, F\right) \neq 0\right\} . \tag{3.23}
\end{equation*}
$$

Proposition 3.3.6. Let G be an object of $\mathbf{D}(X)$ such that $\chi\left(G, E_{i j}\right)>0$ for all i, j and

$$
\begin{equation*}
\operatorname{Hom}\left(G, E_{i j}[k]\right)=\operatorname{Hom}(G, E[k])=0, k \neq 2 \tag{3.24}
\end{equation*}
$$

for all $E \in M_{H}^{G_{1}}\left(v_{0}\right)$ and i, j. Assume that $\alpha \in \delta\left(H^{\perp}\right) \backslash \cup_{u \in \mathcal{U}^{\prime}} W_{u}$ is sufficiently small.
(1) $G^{\alpha}:=\Phi^{\alpha}(G)$ is a locally free sheaf on X^{\prime} and $\mathcal{A}^{\prime}:=\pi_{*}\left(\left(G^{\alpha}\right)^{\vee} \otimes G^{\alpha}\right)$ is a reflexive sheaf on Y^{\prime} which is independent of the choice of α.
(2) $\mathbf{R} \pi_{*}\left(\left(G^{\alpha}\right)^{\vee} \otimes_{_}\right) \circ \Phi^{\alpha}: \mathbf{D}(X) \rightarrow \mathbf{D}_{\mathcal{A}^{\prime}}\left(Y^{\prime}\right)$ is independent of the choice of α.

Proof. We take a small $\alpha \in \delta\left(H^{\perp}\right)$ with $-\left\langle\alpha, v\left(E_{i j}\right)\right\rangle>0, j>0$. By the base change theorem, G^{α} is a locally free sheaf on X^{\prime}. Let $A_{i j}^{\prime}$ be objects of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ in subsection 3.2. Then we have $\operatorname{Hom}\left(G^{\alpha}, A_{i j}^{\prime}[k]\right)=$ 0 for $k \neq 0$ and $\operatorname{Hom}\left(G^{\alpha}, A_{i j}^{\prime}\right) \neq 0$. Assume that $\alpha^{\prime} \in \delta\left(H^{\perp}\right)$ belongs to another chamber. We set $X^{\prime \prime}:=M_{H}^{v_{0}+\alpha^{\prime}}\left(v_{0}\right)$. By Proposition 3.2.13 (2), $X^{\prime \prime} \cong M_{\widehat{H}}^{G^{\alpha}, \Phi^{\alpha}\left(\alpha^{\prime}\right)}\left(\varrho_{X^{\prime}}\right)$ and $\mathcal{F}:=\Phi_{X \rightarrow X^{\prime}}^{\left(\mathcal{E}^{\alpha}\right)^{\vee}[2]}\left(\mathcal{E}^{\alpha^{\prime}}\right)$ is the universal family of $\Phi^{\alpha}\left(\alpha^{\prime}\right)$-twisted stable objects, where $\mathcal{E}^{\alpha^{\prime}}$ is the universal family associated to α^{\prime}. We have $\Phi^{\alpha^{\prime}}=\Phi_{X^{\prime} \rightarrow X^{\prime \prime}}^{\mathcal{F}^{\vee}[2]} \circ \Phi^{\alpha}$. In particular, $G^{\alpha^{\prime}}=\Phi_{X^{\prime} \rightarrow X^{\prime \prime}}^{\mathcal{F}^{\vee}[2]}\left(G^{\alpha}\right)$. Then the claim follows from Proposition 2.3 .4
3.4. A tilting appeared in Br] and its generalizations. From now on, we assume that α satisfies $-\left\langle\alpha, v\left(E_{i j}\right)\right\rangle>0$ for all $j>0$ and set

$$
\begin{equation*}
\Phi:=\Phi^{\alpha}, \widehat{\Phi}:=\widehat{\Phi}^{\alpha} . \tag{3.25}
\end{equation*}
$$

By Proposition 3.3.6, the assumption is not essential.
Definition 3.4.1. We set

$$
\mathfrak{C}_{i}:= \begin{cases}\mathcal{C}, & i=1 \tag{3.26}\\ \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right), & i=2 \\ \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}, & i=3\end{cases}
$$

For an object $E \in \mathfrak{C}_{i}$, we define the G_{i}-twisted Hilbert polynomial by

$$
\begin{equation*}
\chi\left(G_{i}, E(n)\right):=\sum_{j}(-1)^{j} \operatorname{dim} \operatorname{Hom}\left(G_{i}, E(n)[j]\right) \tag{3.27}
\end{equation*}
$$

where $E(n):=E(n H), i=1$ and $E(n):=E(n \widehat{H}), i=2,3$.
Then Lemma 3.1.3 and Lemma 3.2.10 imply the following.
Lemma 3.4.2. $\chi\left(G_{i}, E(n)\right)>0$ for $E \neq 0$ and $n \gg 0$, that is, (i) rk $E>0$ or (ii) $\mathrm{rk} E=0, \operatorname{deg}_{G_{i}}(E)>0$ or (iii) rk $E=\operatorname{deg}_{G_{i}}(E)=0, \chi\left(G_{i}, E\right)>0$.
Definition 3.4.3. Let $E \neq 0$ be an object of \mathfrak{C}_{i}.
(1) There is a (unique) filtration

$$
\begin{equation*}
0 \subset F_{1} \subset F_{2} \subset \cdots \subset F_{s}=E \tag{3.28}
\end{equation*}
$$

such that each $E_{j}:=F_{j} / F_{j-1}$ is a torsion object or a torsion free G-twisted semi-stable object and

$$
\begin{equation*}
\left(\operatorname{rk} E_{j+1}\right) \chi\left(G_{i}, E_{j}(n)\right)>\left(\operatorname{rk} E_{j}\right) \chi\left(G_{i}, E_{j+1}(n)\right), n \gg 0 \tag{3.29}
\end{equation*}
$$

We call it the Harder-Narasimhan filtration of E.
(2) In the notation of (1), we set

$$
\begin{align*}
& \mu_{\max , G_{i}}(E):= \begin{cases}\mu_{G_{i}}\left(E_{1}\right), & \text { rk } E_{1}>0 \\
\infty, & \text { rk } E_{1}=0\end{cases} \\
& \mu_{\min , G_{i}}(E):= \begin{cases}\mu_{G_{i}}\left(E_{s}\right), & \text { rk } E_{s}>0 \\
\infty, & \text { rk } E_{s}=0\end{cases} \tag{3.30}
\end{align*}
$$

Remark 3.4.4. An object $E \neq 0$ has a torsion if and only if $\mu_{\max , G_{i}}(E)=\infty$ and E is a torsion object if and only if $\mu_{\min , G_{i}}(E)=\infty$.

We define several torsion pairs of \mathfrak{C}_{i}.
Definition 3.4.5. (1) Let \mathfrak{T}_{i}^{μ} (resp. $\overline{\mathfrak{T}}_{i}^{\mu}$) be the full subcategory of \mathfrak{C}_{i} such that $E \in \mathfrak{C}_{i}$ belongs to \mathfrak{T}_{i}^{μ} (resp. $\overline{\mathfrak{T}}_{i}^{\mu}$) if (i) E is a torsion object or (ii) $\mu_{\min , G_{i}}(E)>0$ (resp. $\left.\mu_{\min , G_{i}}(E) \geq 0\right)$.
(2) Let \mathfrak{F}_{i}^{μ} (resp. $\overline{\mathfrak{F}}_{i}^{\mu}$) be the full subcategory of \mathfrak{C}_{i} such that $E \in \mathfrak{C}_{i}$ belongs to \mathfrak{T}_{i}^{μ} (resp. $\overline{\mathfrak{F}}_{i}^{\mu}$) if $E=0$ or E is a torsion free object with $\mu_{\max , G_{i}}(E) \leq 0\left(\right.$ resp. $\left.\mu_{\max , G_{i}}(E)<0\right)$.
Definition 3.4.6. (1) Let \mathfrak{T}_{i} (resp. $\overline{\mathfrak{T}}_{i}$) be the full subcategory of \mathfrak{C}_{i} such that $E \in \mathfrak{C}_{i}$ belongs to \mathfrak{T}_{i} (resp. $\overline{\mathfrak{T}}_{i}$) if (i) E is a torsion object or (ii) for the Harder-Narasimhan filtration (3.28) of E, E_{s} satisfies $\mu_{G_{i}}\left(E_{s}\right)>0$ or $\mu_{G_{i}}\left(E_{s}\right)=0$ and $\chi\left(G_{i}, E_{s}\right)>0\left(\right.$ resp. $\mu_{G_{i}}\left(E_{s}\right)=0$ and $\left.\chi\left(G_{i}, E_{s}\right) \geq 0\right)$.
(2) Let \mathfrak{F}_{i} (resp. $\overline{\mathfrak{F}}_{i}$) be the full subcategory of \mathfrak{C}_{i} such that $E \in \mathfrak{C}_{i}$ belongs to \mathfrak{F}_{i} (resp. $\overline{\mathfrak{F}}_{i}$) if E is a torsion free object and for the Harder-Narasimhan filtration (3.28) of E, E_{1} satisfies $\mu_{G_{i}}\left(E_{1}\right)<0$ or $\mu_{G_{i}}\left(E_{1}\right)=0$ and $\chi\left(G_{i}, E_{1}\right) \leq 0\left(\right.$ resp. $\mu_{G_{i}}\left(E_{1}\right)=0$ and $\left.\chi\left(G_{i}, E_{1}\right)<0\right)$.
Definition 3.4.7. $\left(\mathfrak{T}_{i}^{\mu}, \mathfrak{F}_{i}^{\mu}\right)$, $\left(\overline{\mathfrak{T}}_{i}^{\mu}, \overline{\mathfrak{F}}_{i}^{\mu}\right)$, $\left(\mathfrak{T}_{i}, \mathfrak{F}_{i}\right)$ and $\left(\overline{\mathfrak{T}}_{i}, \overline{\mathfrak{F}}_{i}\right)$ are torsion pairs of \mathfrak{C}_{i}. We denote the tiltings of \mathfrak{C}_{i} by $\mathfrak{A}_{i}^{\mu}, \overline{\mathfrak{A}}_{i}^{\mu}, \mathfrak{A}_{i}$ and $\overline{\mathfrak{A}}_{i}$ respectively.

We note that $\mathfrak{T}_{1}^{\mu} \subset \mathfrak{T}_{1}$. We shall study the condition $\mathfrak{T}_{1}^{\mu}=\mathfrak{T}_{1}$. We start with the following lemma.
Lemma 3.4.8. Let E be a local projective generator of \mathfrak{C}_{i}. Then $\operatorname{Ext}^{1}(E, F)=0$ for all 0-dimensional objects F of \mathfrak{C}_{i}. In particular, if E is a subobject of a torsion free object E^{\prime} such that E^{\prime} / E is 0 -dimensional, then $E^{\prime}=E$.

Proof. We only treat the case where $i=1$. Then $\mathbf{R} \pi_{*}\left(E^{\vee} \otimes F\right)=\pi_{*}\left(E^{\vee} \otimes F\right)$ is a 0-dimensional sheaf on Y. Hence we get $\operatorname{Ext}^{1}(E, F)=H^{1}\left(Y, \pi_{*}\left(E^{\vee} \otimes F\right)\right)=0$.

Lemma 3.4.9. Assume that $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is a μ-stable local projective generator of \mathcal{C} for a general $x^{\prime} \in X^{\prime}$.
(1) $\mathfrak{T}_{1}=\mathfrak{T}_{1}^{\mu}$.
(2) Every μ-semi-stable object $E \in \mathcal{C}$ with $\operatorname{deg}_{G_{1}}(E)=\chi\left(G_{1}, E\right)=0$ is G_{1}-twisted semi-stable. Moreover if E is G_{1}-twisted stable, then it is μ-stable.
(3) Let E be a μ-semi-stable object $E \in \mathcal{C}$ with $\operatorname{rk} E>0$, $\operatorname{deg}_{G_{1}}(E)=\chi\left(G_{1}, E\right)=0$. Then $\operatorname{Ext}^{i}(E, S)=$ $0, i \neq 0$ for any irreducible object $S \in \mathcal{C}$.
(4) $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is a local projective generator of \mathcal{C} for any $x^{\prime} \in X^{\prime}$.

Proof. (1) Let E be a μ-stable object of \mathcal{C} with $\operatorname{deg}_{G_{1}}(E)=0$ and $\chi\left(G_{1}, E\right)>0$. Since $\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=0$ for all $x^{\prime} \in X^{\prime}, \operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, E\right) \neq 0$ for all $x^{\prime} \in X^{\prime}$. Assume that $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is a μ-stable local projective generator. By Lemma 3.4 .8 and $\operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, E\right) \neq 0$, we get $E \cong \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$. Therefore $\chi\left(G_{1}, E\right) \leq 0$ for all μ-stable object $E \in \mathcal{C}$ with $\operatorname{deg}_{G_{1}}(E)=0$. Hence we get $\mathfrak{T}_{1}=\mathfrak{T}_{1}^{\mu}$.
(2) Let E^{\prime} be a subobject of E with $\operatorname{deg}_{G_{1}}(E)=0$. Then (1) implies that $\chi\left(G_{1}, E^{\prime}\right) \leq 0$. Hence E is G_{1}-twisted semi-stable. If E / E^{\prime} is torsion free, then we also have $\chi\left(G_{1}, E / E^{\prime}\right) \leq 0$, which implies that $\chi\left(G_{1}, E^{\prime}\right)=\chi\left(G_{1}, E / E^{\prime}\right)=0$. Thus E is properly G_{1}-twisted semi-stable. Therefore the second claim also holds.
(3) If $\operatorname{Ext}^{1}(S, E)=\operatorname{Ext}^{1}(E, S)^{\vee} \neq 0$, then a non-trivial extension

$$
\begin{equation*}
0 \rightarrow E \rightarrow E^{\prime} \rightarrow S \rightarrow 0 \tag{3.31}
\end{equation*}
$$

gives a μ-semi-stable object E^{\prime} with $\chi\left(G_{1}, E^{\prime}\right)=\chi\left(G_{1}, S\right)>0$. On the other hand, (1) implies that $\chi\left(G_{1}, E^{\prime}\right) \leq 0$. Therefore $\operatorname{Ext}^{1}(E, S)=0$. Since S is a torsion object, $\operatorname{Ext}^{2}(E, S) \cong \operatorname{Hom}(S, E)^{\vee}=0$.
(4) Since $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is a μ-semi-stable object with $\operatorname{deg}_{G_{1}}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=\chi\left(G_{1}, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=0, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X} \in \mathcal{C}$ and satisfies the assertion of (3). By Lemma 3.4.2 $\chi\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, S\right)=\chi\left(G_{1}, S\right)>0$ for any irreducible object S. Then $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is locally free and is a local projective generator by Proposition 1.1.22
Remark 3.4.10. By the proof of Lemma 3.4.9, $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, x^{\prime} \in X^{\prime}$ is a local projective generator of \mathcal{C} if $\mathfrak{T}_{1}=\mathfrak{T}_{1}^{\mu}$. Indeed if $\mathfrak{T}_{1}=\mathfrak{T}_{1}^{\mu}$, then the same proofs of (2), (3) and (4) work.

3.5. Equivalence between \mathfrak{A}_{1} and \mathfrak{A}_{2}^{μ}.

Lemma 3.5.1. (1) If $E \in \mathfrak{T}_{1}$, then $\operatorname{Hom}\left(E, E_{i j}\right)=\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=0$ for all i, j and $x^{\prime} \in X^{\prime}$. In particular, $H^{2}(\Phi(E))=0$.
(2) If $E \in \mathfrak{F}_{1}$, then $\operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, E\right)=0$ for a general $x^{\prime} \in X^{\prime}$. In particular, $H^{0}(\Phi(E))=0$.

Proof. (1) The first claim is obvious. The second claim is a consequence of the Serre duality and the base change theorem (see the proof of Lemma 3.5.2 (2)).
(2) If there is a non-zero morphism $\phi: \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X} \rightarrow E$, we see that ϕ is injective and coker $\phi \in \mathfrak{F}_{1}$. By the induction on $\mathrm{rk} E$, we get the first claim. The second claim follows by the base change theorem.

Lemma 3.5.2. Let E be an object of \mathcal{C}.
(1) Assume that $\operatorname{Hom}\left(E_{i j}, E[q]\right)=\operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, E[q]\right)=0$ for all $i, j, x^{\prime} \in X^{\prime}$ and $q>0$. Then $\Phi(E) \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$.
(2) There is a complex

$$
\begin{equation*}
0 \rightarrow W_{0} \rightarrow W_{1} \rightarrow W_{2} \rightarrow 0 \tag{3.32}
\end{equation*}
$$

such that W_{i} are local projective objects of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ and $\Phi(E)$ is quasi-isomorphic to this complex.
(3) $H^{0}\left({ }^{p} H^{2}(\Phi(E))\right)=H^{2}(\Phi(E))$ and ${ }^{p} H^{0}(\Phi(E)) \subset H^{0}(\Phi(E))$. In particular, ${ }^{p} H^{0}(\Phi(E))$ is torsion free.
(4) If $\operatorname{Hom}\left(E, E_{i j}\right)=0$ for all i, j and $\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=0$ for all $x^{\prime} \in X^{\prime}$, then ${ }^{p} H^{2}(\Phi(E))=0$. In particular, if $E \in \mathfrak{T}_{1}$, then ${ }^{p} H^{2}(\Phi(E))=0$.
(5) If $E \in \mathfrak{F}_{1}$, then ${ }^{p} H^{0}(\Phi(E))=0$.

Proof. (1) We note that $F \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ is 0 if and only if $\operatorname{Hom}\left(F, A_{i j}^{\prime}\right)=\operatorname{Hom}\left(F, A_{i 0}^{\prime}\right)=\operatorname{Hom}\left(F, \mathbb{C}_{x^{\prime}}\right)=0$ for all $i, j>0$ and $x^{\prime} \in X^{\prime}$. Since

$$
\begin{align*}
\operatorname{Hom}\left(\Phi(E)[q], \Phi\left(E_{i j}\right)[2]\right) & \cong \operatorname{Hom}\left(E[q], E_{i j}[2]\right) \cong \operatorname{Hom}\left(E_{i j}, E[q]\right)^{\vee}, \\
\operatorname{Hom}\left(\Phi(E)[q], \Phi\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)[2]\right) & \cong \operatorname{Hom}\left(E[q], \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}[2]\right) \cong \operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, E[q]\right)^{\vee}, \tag{3.33}
\end{align*}
$$

we have ${ }^{p} H^{q}(\Phi(E))=0$ for $q>0$, which implies that $\Phi(E) \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$. Thus the claim (1) holds.
(2)

We take a resolution of E

$$
\begin{equation*}
0 \rightarrow V_{-2} \rightarrow V_{-1} \rightarrow V_{0} \rightarrow E \rightarrow 0 \tag{3.34}
\end{equation*}
$$

such that $V_{-k}=G\left(-n_{k}\right)^{\oplus N_{k}}, n_{k} \gg 0$ for $k=0,1$, where G is a local projective generator of \mathcal{C}. By using the Serre duality, our choice of n_{k} implies that $\operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, V_{-k}[q]\right)=\operatorname{Hom}\left(E_{i j}, V_{-k}[q]\right)=0$ for $q \neq 2$ and $k=0,1$. Then we also have $\operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times x}, V_{-2}[q]\right)=\operatorname{Hom}\left(E_{i j}, V_{-2}[q]\right)=0$ for $q \neq 2$. Hence $\Phi\left(V_{-k}\right)[2]$, $k=0,1,2$ are locally free sheaves on X^{\prime}. Since $\operatorname{Hom}\left(\Phi\left(V_{-k}\right)[2], A_{i j}^{\prime}[q]\right)=\operatorname{Hom}\left(\Phi\left(V_{-k}\right)[2], \Phi\left(E_{i j}\right)[2+q]\right)=$ $\operatorname{Hom}\left(V_{-k}, E_{i j}[q]\right)=0, q>0, W_{2-k}:=\Phi\left(V_{-k}\right)[2], k=0,1,2$ are local projective objects of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ and the associated complex W_{\bullet} defines the required complex.
(3) is obvious. (4) follows from the proof of (1) and Lemma 3.5.1 (1). (5) follows from (3) and Lemma 3.5.1 (2).

Definition 3.5.3. (1) We set $\Phi^{i}(E):={ }^{p} H^{i}(\Phi(E)) \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ and $\widehat{\Phi}^{i}(E):={ }^{p} H^{i}(\widehat{\Phi}(E)) \in \mathcal{C}$.
(2) We say that WIT_{i} holds for $E \in \mathcal{C}$ (resp. $F \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$) with respect to Φ (resp. $\widehat{\Phi}$), if $\Phi^{j}(E)=0$ $\left.\left(\operatorname{resp} . \widehat{\Phi}^{j}(F)\right)=0\right)$ for $j \neq i$.

Lemma 3.5.4. Let E be an object of \mathcal{C}.
(1) If WIT_{0} holds for E with respect to Φ, then $E \in \mathfrak{T}_{1}$.
(2) If WIT_{2} holds for E with respect to Φ, then $E \in \mathfrak{F}_{1}$. In particular, E is torsion free. Moreover if $\Phi^{2}(E)$ does not contain a 0 -dimensional object, then $E \in \overline{\mathfrak{F}}_{1}^{\mu}$.

Proof. For an object $E \in \mathcal{C}$, there is an exact sequence

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow E \rightarrow E_{2} \rightarrow 0 \tag{3.35}
\end{equation*}
$$

such that $E_{1} \in \mathfrak{T}_{1}$ and $E_{2} \in \mathfrak{F}_{1}$. Applying Φ to this exact sequence, we get a long exact sequence

$$
\begin{align*}
& 0 \longrightarrow \Phi^{0}\left(E_{1}\right) \longrightarrow \Phi^{0}(E) \longrightarrow \Phi^{0}\left(E_{2}\right) \\
& \longrightarrow \Phi^{1}\left(E_{1}\right) \longrightarrow \Phi^{1}(E) \longrightarrow \Phi^{1}\left(E_{2}\right) \tag{3.36}\\
&\left.\longrightarrow \Phi^{2}(E) \longrightarrow \Phi_{1}\right) \longrightarrow \Phi^{2}\left(E_{2}\right) \longrightarrow 0 .
\end{align*}
$$

By Lemma 3.5.2 (4), (5), $\Phi^{0}\left(E_{2}\right)=\Phi^{2}\left(E_{1}\right)=0$. If WIT_{0} holds for E, then we get $\Phi\left(E_{2}\right)=0$. Hence (1) holds. If WIT_{2} holds for E, then we get $\Phi\left(E_{1}\right)=0$. Thus the first part of (2) holds. Assume that there is an exact sequence

$$
\begin{equation*}
0 \rightarrow E_{2}^{\prime} \rightarrow E \rightarrow E_{2}^{\prime \prime} \rightarrow 0 \tag{3.37}
\end{equation*}
$$

such that E_{2}^{\prime} is a μ-semi-stable object with $\operatorname{deg}_{G_{1}}\left(E_{2}^{\prime}\right)=0$ and $E_{2}^{\prime \prime} \in \overline{\mathfrak{F}}_{1}^{\mu}$. By the first part of (2), we get $\chi\left(G_{1}, E_{2}^{\prime}\right) \leq 0$. By Lemma3.5.1 $(2), \Phi^{0}\left(E_{2}^{\prime \prime}\right)=0$. Then we see that WIT_{2} holds for E_{2}^{\prime} and $\operatorname{deg}_{G_{2}}\left(\Phi^{2}\left(E_{2}^{\prime}\right)\right)=$ $\operatorname{deg}_{G_{1}}\left(E_{2}^{\prime}\right)=0$. Since $\operatorname{rk} \Phi^{2}\left(E_{2}^{\prime}\right)=\chi\left(G_{1}, E_{2}^{\prime}\right) \leq 0, \Phi^{2}\left(E_{2}^{\prime}\right)$ is a 0-dimensional object. By our assumption, we get that $\Phi^{1}\left(E_{2}^{\prime \prime}\right) \rightarrow \Phi^{2}\left(E_{2}^{\prime}\right)$ is an isomorphism. By Lemma 6.3.1 in the appendix, we have $\widehat{\Phi}^{0}\left(\Phi^{1}\left(E_{2}^{\prime \prime}\right)\right)=0$, which implies that $E_{2}^{\prime} \cong \Phi^{0}\left(\Phi^{2}\left(E_{2}^{\prime}\right)\right)=0$.

Lemma 3.5.5. For an object $E \in \mathcal{C}$, $\operatorname{deg}_{G_{2}}\left(\Phi^{0}(E)\right) \leq 0$ and $\operatorname{deg}_{G_{2}}\left(\Phi^{2}(E)\right) \geq 0$.
Proof. We note that

$$
\begin{equation*}
\widehat{\Phi}\left(\Phi^{0}(E)\right)=\widehat{\Phi}^{2}\left(\Phi^{0}(E)\right)[-2], \widehat{\Phi}\left(\Phi^{2}(E)\right)=\widehat{\Phi}^{0}\left(\Phi^{2}(E)\right) \tag{3.38}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{deg}_{G_{2}}\left(\Phi^{0}(E)\right)=-\operatorname{deg}_{G_{1}}\left(\widehat{\Phi}^{2}\left(\Phi^{0}(E)\right)\right), \operatorname{deg}_{G_{2}}\left(\Phi^{2}(E)\right)=-\operatorname{deg}_{G_{1}}\left(\widehat{\Phi}^{0}\left(\Phi^{2}(E)\right)\right) \tag{3.39}
\end{equation*}
$$

Since $\widehat{\Phi}^{2}\left(\Phi^{0}(E)\right)$ satisfies WIT_{0} with respect to $\Phi, \widehat{\Phi}^{2}\left(\Phi^{0}(E)\right) \in \mathfrak{T}_{1}$, which implies that $\operatorname{deg}_{G_{1}}\left(\widehat{\Phi}^{2}\left(\Phi^{0}(E)\right)\right) \geq$ 0 . Since $\widehat{\Phi}^{0}\left(\Phi^{2}(E)\right)$ satisfies WIT_{2} with respect to $\Phi, \widehat{\Phi}^{0}\left(\Phi^{2}(E)\right) \in \mathfrak{F}_{1}$, which implies that $\operatorname{deg}_{G_{1}}\left(\widehat{\Phi}^{0}\left(\Phi^{2}(E)\right)\right) \leq$ 0 . Therefore our claims hold.

Lemma 3.5.6. (1) If $F \in \mathfrak{T}_{2}^{\mu}$, then $\widehat{\Phi}^{2}(F)=0$.

(2) If WIT_{0} holds for $F \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ with respect to $\widehat{\Phi}$, then $F \in \mathfrak{T}_{2}^{\mu}$.
(3) If $F \in \mathfrak{F}_{2}^{\mu}$, then $\widehat{\Phi}^{0}(F)=0$.
(4) If WIT_{2} holds for $F \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ with respect to $\widehat{\Phi}$, then $F \in \mathfrak{F}_{2}^{\mu}$.

Proof. (1) By Lemma 6.3.1 in the appendix, we have an exact sequence

$$
\begin{equation*}
F \rightarrow \Phi^{0}\left(\widehat{\Phi}^{2}(F)\right) \xrightarrow{\phi} \Phi^{2}\left(\widehat{\Phi}^{1}(F)\right) \rightarrow 0 \tag{3.40}
\end{equation*}
$$

By Lemma 3.5.5, $\operatorname{deg}_{G_{2}}(\operatorname{ker} \phi) \leq 0$. Since $\Phi^{0}\left(\widehat{\Phi}^{2}(F)\right)$ is torsion free, $\operatorname{ker} \phi$ is also torsion free. By our assumption of F, we have ker $\phi=0$. Then $\Phi^{0}\left(\widehat{\Phi}^{2}(F)\right) \cong \Phi^{2}\left(\widehat{\Phi}^{1}(F)\right)$ satisfies WIT_{0} and WIT_{2}, which implies that $\Phi^{0}\left(\widehat{\Phi}^{2}(F)\right) \cong \Phi^{2}\left(\widehat{\Phi}^{1}(F)\right) \cong 0$. Therefore $\widehat{\Phi}^{2}(F)=0$.
(2) Assume that there is an exact sequence

$$
\begin{equation*}
0 \rightarrow F_{1} \rightarrow F \rightarrow F_{2} \rightarrow 0 \tag{3.41}
\end{equation*}
$$

such that $F_{1} \in \mathfrak{T}_{2}^{\mu}$ and $F_{2} \in \mathfrak{F}_{2}^{\mu}$. By (1), we have $\widehat{\Phi}^{2}\left(F_{1}\right)=0$. By a similar exact sequence to (3.36), we see that WIT_{0} holds for F_{2} and $\operatorname{deg}_{G_{1}}\left(\widehat{\Phi}^{0}\left(F_{2}\right)\right)=-\operatorname{deg}_{G_{2}}\left(F_{2}\right) \geq 0$. On the other hand, since WIT_{2} holds for $\widehat{\Phi}^{0}\left(F_{2}\right)$, Lemma 3.5.4 implies that $\widehat{\Phi}^{0}\left(F_{2}\right) \in \mathfrak{F}_{1}$. Hence $\operatorname{deg}_{G_{1}}\left(\widehat{\Phi}^{0}\left(F_{2}\right)\right)=0$ and $\chi\left(G_{1}, \widehat{\Phi}^{0}\left(F_{2}\right)\right) \leq 0$. Since $\chi\left(G_{1}, \widehat{\Phi}^{0}\left(F_{2}\right)\right)=\operatorname{rk} F_{2}$, we have rk $F_{2}=0$. Since \mathfrak{F}_{2}^{μ} contains no torsion object except 0 , we conclude that $F_{2}=0$.
(3) By Lemma 6.3.1 we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \Phi^{0}\left(\widehat{\Phi}^{1}(F)\right) \xrightarrow{\psi} \Phi^{2}\left(\widehat{\Phi}^{0}(F)\right) \rightarrow F \tag{3.42}
\end{equation*}
$$

By (2), $\Phi^{2}\left(\widehat{\Phi}^{0}(F)\right) \in \mathfrak{T}_{2}^{\mu}$, which implies that coker $\psi=0$. Then $\Phi^{0}\left(\widehat{\Phi}^{1}(F)\right) \cong \Phi^{2}\left(\widehat{\Phi}^{0}(F)\right)$ satisfies WIT_{0} and WIT_{2}, which implies that $\Phi^{0}\left(\widehat{\Phi}^{1}(F)\right) \cong \Phi^{2}\left(\widehat{\Phi}^{0}(F)\right) \cong 0$. Therefore $\widehat{\Phi}^{0}(F)=0$.
(4) Assume that there is an exact sequence

$$
\begin{equation*}
0 \rightarrow F_{1} \rightarrow F \rightarrow F_{2} \rightarrow 0 \tag{3.43}
\end{equation*}
$$

such that $0 \neq F_{1} \in \mathfrak{T}_{2}^{\mu}$ and $F_{2} \in \mathfrak{F}_{2}^{\mu}$. By (3), $\widehat{\Phi}^{0}\left(F_{2}\right)=0$. By a similar exact sequence to (3.36), we see that WIT_{2} holds for F_{1} and $\operatorname{deg}_{G_{1}}\left(\widehat{\Phi}^{2}\left(F_{1}\right)\right)=-\operatorname{deg}_{G_{2}}\left(F_{1}\right) \leq 0$. Moreover if rk $F_{1}>0$, then $\operatorname{deg}_{G_{1}}\left(\widehat{\Phi}^{2}\left(F_{1}\right)\right)<0$. On the other hand, since WIT_{0} holds for $\widehat{\Phi}^{2}\left(F_{1}\right)$, Lemma 3.5.4 implies that $\widehat{\Phi}^{2}\left(F_{1}\right) \in \mathfrak{T}_{1}$. Hence rk $F_{1}=0$ and $\operatorname{deg}_{G_{1}}\left(\widehat{\Phi}^{2}\left(F_{1}\right)\right)=0$. Then $\widehat{\Phi}^{2}\left(F_{1}\right) \in \mathfrak{T}_{1}$ implies that $0<\chi\left(G_{1}, \widehat{\Phi}^{2}\left(F_{1}\right)\right)=\operatorname{rk} F_{1}$, which is a contradiction. Therefore $F_{1}=0$.
Lemma 3.5.7. (1) Assume that $E \in \mathfrak{T}_{1}$. Then
(a) $\Phi^{0}(E) \in \mathfrak{F}_{2}^{\mu}$.
(b) $\Phi^{1}(E) \in \mathfrak{T}_{2}^{\mu}$.
(c) $\Phi^{2}(E)=0$.
(2) Assume that $E \in \mathfrak{F}_{1}$. Then
(a) $\Phi^{0}(E)=0$.
(b) $\Phi^{1}(E) \in \mathfrak{F}_{2}^{\mu}$.
(c) $\Phi^{2}(E) \in \mathfrak{T}_{2}^{\mu}$.

Proof. We take a decomposition

$$
\begin{equation*}
0 \rightarrow F_{1} \rightarrow \Phi^{1}(E) \rightarrow F_{2} \rightarrow 0 \tag{3.44}
\end{equation*}
$$

with $F_{1} \in \mathfrak{T}_{2}^{\mu}$ and $F_{2} \in \mathfrak{F}_{2}^{\mu}$. Applying $\widehat{\Phi}$, we have an exact sequence

$$
\begin{align*}
& 0 \widehat{\Phi}^{0}\left(F_{1}\right) \longrightarrow \widehat{\Phi}^{0}\left(\Phi^{1}(E)\right) \longrightarrow \widehat{\Phi}^{0}\left(F_{2}\right) \\
& \longrightarrow \widehat{\Phi}^{1}\left(F_{1}\right) \longrightarrow \widehat{\Phi}^{1}\left(F_{2}\right) \tag{3.45}\\
&\left.\left.\longrightarrow \widehat{\Phi}^{2}(F)\right) \longrightarrow \widehat{\Phi}^{2}\left(\Phi^{1}(E)\right) \longrightarrow F_{2}\right) \longrightarrow
\end{align*}
$$

By Lemma 3.5.6, we have $\widehat{\Phi}^{0}\left(F_{2}\right)=\widehat{\Phi}^{2}\left(F_{1}\right)=0$.
(1) Assume that $E \in \mathfrak{T}_{1}$. Then (a) follows from Lemma 3.5.6 (4), and (c) follows from Lemma 3.5.2 (4). We prove (b). We assume that $F_{2} \neq 0$. By Lemma 6.3.1 and (c), we have $\widehat{\Phi}^{2}\left(\Phi^{1}(E)\right)=0$. Then WIT ${ }_{1}$ holds for F_{2} and $\operatorname{deg}_{G_{1}}\left(\widehat{\Phi}^{1}\left(F_{2}\right)\right)=\operatorname{deg}_{G_{2}}\left(F_{2}\right) \leq 0$. By Lemma 6.3.1 we have a surjective homomorphism

$$
\begin{equation*}
E \rightarrow \widehat{\Phi}^{1}\left(\Phi^{1}(E)\right) \tag{3.46}
\end{equation*}
$$

Hence $\widehat{\Phi}^{1}\left(F_{2}\right)$ is a quotient object of E. Since $E \in \mathfrak{T}_{1}$, we see that $\operatorname{deg}_{G_{1}}\left(\widehat{\Phi}^{1}\left(F_{2}\right)\right) \geq 0$. Hence $\operatorname{deg}_{G_{1}}\left(\widehat{\Phi}^{1}\left(F_{2}\right)\right)=$ 0 . If rk $\widehat{\Phi}^{1}\left(F_{2}\right)>0$, then since $\chi\left(G_{1}, \widehat{\Phi}^{1}\left(F_{2}\right)\right)=-\operatorname{rk} F_{2}<0$, we get $E \notin \mathfrak{T}_{1}$. Hence rk $\widehat{\Phi}^{1}\left(F_{2}\right)=0$. Then $\chi\left(G_{1}, \widehat{\Phi}^{1}\left(F_{2}\right)\right)=-\operatorname{rk} F_{2}<0$ implies that the G_{1}-twisted Hilbert polynomial of $\widehat{\Phi}^{1}\left(F_{2}\right)$ is not positive. By Lemma 3.4.2 this is impossible. Therefore $F_{2}=0$.
(2) Assume that $E \in \mathfrak{F}_{1}$. By Lemma 3.5.2 and Lemma 3.5.6, (a) and (c) hold. We prove (b). Assume that $F_{1} \neq 0$. By $\Phi^{0}(E)=0$ and Lemma 6.3.1, we have $\widehat{\Phi}^{0}\left(\Phi^{1}(E)\right)=0$. Then WIT ${ }_{1}$ holds for F_{1} and we have an injective morphism $\widehat{\Phi}^{1}\left(F_{1}\right) \rightarrow \widehat{\Phi}^{1}\left(\Phi^{1}(E)\right) \rightarrow E$. Assume that $\operatorname{dim} F_{1} \geq 1$. Since $\operatorname{deg}_{G_{1}}\left(\widehat{\Phi}^{1}\left(F_{1}\right)\right)=$ $\operatorname{deg}_{G_{2}}\left(F_{1}\right)>0$, this is impossible. Assume that $\operatorname{dim} F_{1}=0$. Then $\chi\left(G_{2}, F_{1}\right)>0$, which implies that $\operatorname{rk} \widehat{\Phi}^{1}\left(F_{1}\right)=-\chi\left(G_{2}, F_{1}\right)<0$. This is a contradiction. Therefore $F_{1}=0$.

The following is a generalization of a result in [H] (see Remark 3.5.9 below).
Theorem 3.5.8. Φ induces an equivalence $\mathfrak{A}_{1} \rightarrow \mathfrak{A}_{2}^{\mu}[-1]$. Moreover $\widehat{\Phi}^{0}(F) \in \overline{\mathfrak{F}}_{1}^{\mu}$ if $F \in \mathfrak{T}_{2}^{\mu}$ does not contain a 0-dimensional object.

Proof. For $E \in \mathfrak{A}_{1}$, we have an exact sequence in \mathfrak{A}_{1}

$$
\begin{equation*}
0 \rightarrow H^{-1}(E)[1] \rightarrow E \rightarrow H^{0}(E) \rightarrow 0 \tag{3.47}
\end{equation*}
$$

Then we have an exact triangle

$$
\begin{equation*}
\Phi\left(H^{-1}(E)\right)[2] \rightarrow \Phi(E[1]) \rightarrow \Phi\left(H^{0}(E)\right)[1] \rightarrow \Phi\left(H^{-1}(E)\right)[3] \tag{3.48}
\end{equation*}
$$

Hence $\Phi^{i}(E[1])=0$ for $i \neq-1,0$ and we have an exact sequence

$$
\begin{align*}
& 0 \longrightarrow \Phi^{1}\left(H^{-1}(E)\right) \longrightarrow \Phi^{-1}(E[1]) \longrightarrow \Phi^{0}\left(H^{0}(E)\right) \\
& \longrightarrow \Phi^{2}\left(H^{-1}(E)\right) \longrightarrow \Phi^{0}(E[1]) \longrightarrow \Phi^{1}\left(H^{0}(E)\right) \longrightarrow \tag{3.49}
\end{align*}
$$

By Lemme 3.5.7 $\Phi^{-1}(E[1]) \in \mathfrak{F}_{2}^{\mu}$ and $\Phi^{0}(E[1]) \in \mathfrak{T}_{2}^{\mu}$. Therefore $\Phi(E[1]) \in \mathfrak{A}_{2}^{\mu}$.
Conversely for $F \in \mathfrak{A}_{2}^{\mu}$ and $E_{1} \in \mathfrak{A}_{1}, \Phi\left(E_{1}\right)[1] \in \mathfrak{A}_{2}^{\mu}$ implies that

$$
\begin{align*}
& \operatorname{Hom}\left(\widehat{\Phi}(F)[1], E_{1}[p]\right)=\operatorname{Hom}\left(F,\left(\Phi\left(E_{1}\right)[1]\right)[p]\right)=0, p<0 \\
& \operatorname{Hom}\left(E_{1}[p], \widehat{\Phi}(F)[1]\right)=\operatorname{Hom}\left(\left(\Phi\left(E_{1}\right)[1]\right)[p], F\right)=0, p>0 \tag{3.50}
\end{align*}
$$

Hence $\widehat{\Phi}(F)[1] \in \mathfrak{A}_{1}$. Therefore the first claim holds.
For the last claim, we note that there is an exact sequence

$$
\begin{equation*}
0 \rightarrow \Phi^{0}\left(\widehat{\Phi}^{1}(F)\right) \rightarrow \Phi^{2}\left(\widehat{\Phi}^{0}(F)\right) \rightarrow F \tag{3.51}
\end{equation*}
$$

by Lemma 6.3.1. By Lemma 3.5.2 (3), $\Phi^{0}\left(\widehat{\Phi}^{1}(F)\right)$ is torsion free. Hence $\Phi^{2}\left(\widehat{\Phi}^{0}(F)\right)$ does not contain a 0 -dimensional object. Then Lemma 3.5.4 (2) implies the claim.

Remark 3.5.9. In [Y5, we gave a different proof of [H, Prop. 4.2]. Since we used different notations in Y5, we explain the correspendence of the terminologies: Φ corresponds to $\mathcal{F}_{\mathcal{E}}$ in [Y5], \mathfrak{A}_{2}^{μ} corresponds to \mathfrak{A}_{1} in [Y5 Thm. 2.1] and \mathfrak{A}_{1} corresponds to \mathfrak{A}_{2} or $\mathfrak{A}_{2}^{\prime}$ in [Y5, Thm. 2.1, Prop. 2.7].
3.6. Fourier-Mukai duality for a $K 3$ surface. In this subsection, we shall prove a kind of duality property between (X, H) and $\left(X^{\prime}, \widehat{H}\right)$. In other words, we show that X is the moduli space of some objects on X^{\prime} and H is the natural determinant line bundle on the moduli space.

Theorem 3.6.1. Assume that \mathbb{C}_{x} is β-stable for all $x \in X$.
(1) $\mathcal{E}_{\mid X^{\prime} \times\{x\}} \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$ is $G_{3}-\Phi(\beta)^{\vee}$-twisted stable for all $x \in X$ and we have an isomorphism $\phi: X \rightarrow M_{\widehat{H}}^{G_{3}-\Phi(\beta)^{\vee}}\left(w_{0}^{\vee}\right)$ by sending $x \in X$ to $\mathcal{E}_{\mid X^{\prime} \times\{x\}} \in M_{\widehat{H}}^{G_{3}-\Phi(\beta)^{\vee}}\left(w_{0}^{\vee}\right)$. Moreover we have $H=\widehat{(\widehat{H})}$ under this isomorphism.
(2) Assume that $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is a μ-stable local projective generator of \mathcal{C} for a general $x^{\prime} \in X^{\prime}$. Then $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ is a μ-stable local projective generator of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$ for $x \in X \backslash \cup_{i} Z_{i}$.

The proof is similar to that in [Y5, Thm. 2.2]. In particular, if $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is a μ-stable locally free sheaf for a general $x^{\prime} \in X^{\prime}$, then the same proof in [Y5] works. However if $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is not a μ-stable locally free sheaf for any $x^{\prime} \in X^{\prime}$, then we need to introduce a (contravariant) Fourier-Mukai transforms and study their properties. We set

$$
\begin{align*}
& \Psi(E):=\mathbf{R} \operatorname{Hom}_{p_{X^{\prime}}}\left(p_{X}^{*}(E), \mathcal{E}\right)=\Phi(E)^{\vee}[-2], E \in \mathbf{D}(X), \\
& \widehat{\Psi}(F):=\mathbf{R} \operatorname{Hom}_{p_{X}}\left(p_{X^{\prime}}^{*}(F), \mathcal{E}\right), F \in \mathbf{D}\left(X^{\prime}\right) \tag{3.52}
\end{align*}
$$

We shall first study the properties of Ψ and $\widehat{\Psi}$ which are similar to those of Φ and $\widehat{\Phi}$.
We set

$$
\begin{align*}
& \Psi\left(E_{i j}\right)[2]=B_{i j}^{\prime}, j>0 \tag{3.53}\\
& \Psi\left(E_{i 0}\right)[2]=B_{i 0}^{\prime}
\end{align*}
$$

Then the following claims follow from Definition 3.2.8 and Lemma 3.2.7
Lemma 3.6.2. (1) $B_{i j}^{\prime}=\mathcal{O}_{C_{i j}^{\prime}}\left(-b_{i j}^{\prime}-2\right) \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$ and $B_{i 0}^{\prime}=A_{0}\left(-\mathbf{b}^{\prime}+2 \mathbf{b}_{0}\right)^{*}[1] \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$.
(2) Irreducible objects of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$ are

$$
\begin{equation*}
B_{i j}^{\prime}\left(1 \leq i \leq m, 0 \leq j \leq s_{i}^{\prime}\right), \mathbb{C}_{x^{\prime}}\left(x^{\prime} \in X \backslash \cup_{i} Z_{i}^{\prime}\right) \tag{3.54}
\end{equation*}
$$

Lemma 3.6.3. (1) Assume that $E \in \bar{T}_{1}$. Then $\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=0$ for a general $x^{\prime} \in X^{\prime}$.
(2) Assume that $E \in \overline{\mathfrak{F}}_{1}$. Then $\operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, E\right)=0$ for all $x^{\prime} \in X^{\prime}$.

Proof. We only prove (1). Let E be a G_{1}-twisted stable object of \mathcal{C}. If $\operatorname{deg}_{G_{1}}(E)>0$ or $\operatorname{deg}_{G_{1}}(E)=$ 0 and $\chi\left(G_{1}, E\right)>0$, then $\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=0$ for all $x^{\prime} \in X^{\prime}$. Assume that $\operatorname{deg}_{G_{1}}(E)=0$ and $\chi\left(G_{1}, E\right)=0$. Then a non-zero homomorphism $E \rightarrow \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is an isomorphism if $x^{\prime} \notin \cup_{i} Z_{i}^{\prime}$. Therefore $\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=0$ for a general $x^{\prime} \in X^{\prime}$.

Lemma 3.6.4. Let E be an object of \mathcal{C}.
(1) ${ }^{p} H^{i}(\Psi(E))=0$ for $i \geq 3$.
(2) $H^{0}\left({ }^{p} H^{2}(\Psi(E))\right)=H^{2}(\Psi(E))$.
(3) ${ }^{p} H^{0}(\Psi(E)) \subset H^{0}(\Psi(E))$. In particular, ${ }^{p} H^{0}(\Psi(E))$ is torsion free.
(4) If $\operatorname{Hom}\left(E, E_{i j}[2]\right)=0$ for all i, j and $\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}[2]\right)=0$ for all $x^{\prime} \in X^{\prime}$, then ${ }^{p} H^{2}(\Psi(E))=0$. In particular, if $E \in \overline{\mathfrak{F}}_{1}$, then ${ }^{p} H^{2}(\Psi(E))=0$.
(5) If E satisfies $E \in \overline{\mathfrak{T}}_{1}$, then ${ }^{p} H^{0}(\Psi(E))=0$.

Proof. Let W_{\bullet} be the complex in Lemma 3.5.2 (2). By Remark 1.1.9, W_{i}^{\vee} are local projective objects of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$. Since $\Psi(E)$ is represented by the complex $W_{\bullet}^{\vee}[-2],(1),(2)$ and (3) follow.

By Lemma 3.6.2, $F \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$ is 0 if and only if $\operatorname{Hom}\left(F, B_{i j}^{\prime}\right)=\operatorname{Hom}\left(F, \mathbb{C}_{x^{\prime}}\right)=0$ for all i, j and $x^{\prime} \in X^{\prime}$.

Since

$$
\begin{align*}
\operatorname{Hom}\left(E, E_{i j}[2-p]\right)^{\vee} & \cong \operatorname{Hom}\left(\Psi(E)[2-p], \Psi\left(E_{i j}\right)[2]\right), \\
\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}[2-p]\right)^{\vee} & \cong \operatorname{Hom}\left(\Psi(E)[2-p], \Psi\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)[2]\right), \tag{3.55}
\end{align*}
$$

we have (4). (5) follows from (3) and Lemma 3.6.3 (1).
Definition 3.6.5. We set $\Psi^{i}(E):={ }^{p} H^{i}(\Psi(E)) \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$ and $\widehat{\Psi^{i}}(E):={ }^{p} H^{i}(\widehat{\Psi}(E)) \in \mathcal{C}$.
Lemma 3.6.6. Let E be an object of \mathcal{C}.
(1) If WIT_{0} holds for E with respect to Ψ, then $E \in \overline{\mathfrak{F}}_{1}$.
(2) If WIT_{2} holds for E with respect to Ψ, then $E \in \overline{\mathfrak{T}}_{1}$. If $\Psi^{2}(E)$ does not contain a 0-dimensional object, then $E \in \mathfrak{T}_{1}$.

Proof. For an object E of \mathcal{C}, there is an exact sequence

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow E \rightarrow E_{2} \rightarrow 0 \tag{3.56}
\end{equation*}
$$

such that $E_{1} \in \overline{\mathfrak{T}}_{1}$ and $E_{2} \in \overline{\mathfrak{F}}_{1}$. Applying Ψ to this exact sequence, we get a long exact sequence

$$
\begin{align*}
& 0 \longrightarrow \Psi^{0}\left(E_{2}\right) \longrightarrow \Psi^{0}(E) \longrightarrow \Psi^{0}\left(E_{1}\right) \\
& \longrightarrow \Psi^{1}\left(E_{2}\right) \longrightarrow \Psi^{1}(E) \longrightarrow \Psi^{1}\left(E_{1}\right) \tag{3.57}\\
& \longrightarrow \Psi^{2}\left(E_{2}\right) \longrightarrow \Psi^{2}(E) \longrightarrow \Psi^{2}\left(E_{1}\right) \longrightarrow 0
\end{align*}
$$

By Lemma 3.6.4 we have $\Psi^{0}\left(E_{1}\right)=\Psi^{2}\left(E_{2}\right)=0$. If WIT_{0} holds for E, then we get $\Psi\left(E_{1}\right)=0$. Hence (1) holds. If WIT_{2} holds for E, then we get $\Psi\left(E_{2}\right)=0$. Thus the first part of (2) holds. Assume that $\Psi^{2}(E)$ does not have a non-zero 0-dimensional subobject. We take a decomposition

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow E \rightarrow E_{2} \rightarrow 0 \tag{3.58}
\end{equation*}
$$

such that $E_{1} \in \mathfrak{T}_{1}$ and E_{2} is a G_{1}-twisted semi-stable object with $\operatorname{deg}_{G_{1}}\left(E_{2}\right)=\chi\left(G_{1}, E_{2}\right)=0$. Then $\Psi^{0}\left(E_{1}\right)=\Psi^{0}\left(E_{2}\right)=\Psi^{1}\left(E_{2}\right)=0$. In particular, WIT_{2} holds for E_{2} with respect to Ψ. Then $\Psi^{2}\left(E_{2}\right)$ is a torsion object with $\operatorname{deg}_{G_{3}}\left(\Psi^{2}\left(E_{2}\right)\right)=0$, which implies that $\Psi^{2}\left(E_{2}\right)$ is 0-dimensional. Our assumption implies that $\Psi^{1}\left(E_{1}\right) \cong \Psi^{2}\left(E_{2}\right)$. By Lemma 6.3.2 and $\widehat{\Psi}^{0}\left(\Psi^{0}\left(E_{1}\right)\right)=0$, we get $E_{2}=\widehat{\Psi}^{2}\left(\Psi^{2}\left(E_{2}\right)\right)=\widehat{\Psi}^{2}\left(\Psi^{1}\left(E_{1}\right)\right)=$ 0 .

Lemma 3.6.7. Let E be a μ-semi-stable object with $\operatorname{deg}_{G_{1}}(E)=0$. If WIT_{0} holds for E, then $E=0$.
Proof. If WIT_{0} holds for $E \neq 0$, then $\chi\left(G_{1}, E\right)=\mathrm{rk} \Psi(E) \geq 0$. On the other hand, Lemma 3.6.6 implies that $\chi\left(G_{1}, E\right)<0$. Therefore $E=0$.
Lemma 3.6.8. If WIT_{0} holds for E with respect to Ψ, then $E \in \overline{\mathfrak{F}}_{1}^{\mu}$.
Proof. Assume that there is an exact sequence

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow E \rightarrow E_{2} \rightarrow 0 \tag{3.59}
\end{equation*}
$$

such that E_{1} is a μ-semi-stable object with $\operatorname{deg}_{G_{1}}\left(E_{1}\right)=0$ and $E_{2} \in \overline{\mathfrak{F}}_{1}^{\mu}$. Then we have $\Psi^{2}\left(E_{2}\right)=0$. By the exact sequence (3.57), WIT_{0} holds for E_{1}. Then Lemma 3.6.7 implies that $E_{1}=0$.
Lemma 3.6.9. If $E \in \overline{\mathfrak{T}}_{1}^{\mu}$, then $\Psi^{0}(E)=0$.
Proof. We may assume that E is a μ-semi-stable object or a torsion object. If $\operatorname{deg}_{G_{1}}(E)>0$, then the claim holds by the base change theorem. Assume that $\operatorname{deg}_{G_{1}}(E)=0$. By Lemma 6.3.2 we have an exact sequence

$$
\begin{equation*}
E \rightarrow \widehat{\Psi}^{0}\left(\Psi^{0}(E)\right) \rightarrow \widehat{\Psi}^{2}\left(\Psi^{1}(E)\right) \rightarrow 0 \tag{3.60}
\end{equation*}
$$

By Lemma 3.6.8, $\widehat{\Psi}^{0}\left(\Psi^{0}(E)\right) \in \overline{\mathfrak{F}}_{1}^{\mu}$. Since E is a μ-semi-stable object with $\operatorname{deg}_{G_{1}}(E)=0, E \rightarrow \widehat{\Psi}^{0}\left(\Psi^{0}(E)\right)$ is a zero map. Then $\widehat{\Psi}^{0}\left(\Psi^{0}(E)\right) \cong \widehat{\Psi}^{2}\left(\Psi^{1}(E)\right)$ satisfies WIT_{0} and WIT_{2}, which implies that $\widehat{\Psi}^{0}\left(\Psi^{0}(E)\right) \cong$ $\widehat{\Psi}^{2}\left(\Psi^{1}(E)\right) \cong 0$. Therefore $\Psi^{0}(E)=0$.

Lemma 3.6.10.

$$
\begin{equation*}
\operatorname{deg}_{G_{3}}\left(\Psi^{0}(E)\right) \leq 0, \operatorname{deg}_{G_{3}}\left(\Psi^{2}(E)\right) \geq 0 \tag{3.61}
\end{equation*}
$$

Proof. We note that

$$
\begin{equation*}
\operatorname{deg}_{G_{3}}\left(\Psi^{i}(E)\right)=\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}^{i}\left(\Psi^{i}(E)\right)\right) \tag{3.62}
\end{equation*}
$$

for $i=0,2$ by Lemma 6.3.2 Then the claim follows from Lemma 3.6.6
Proof of Theorem 3.6.1.
(1) We first prove the G_{3}-twisted semi-stability of $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ for all $x \in X$. It is sufficient to prove the following lemma.
Lemma 3.6.11. Let E be a 0-dimensional object of \mathcal{C}. Then WIT_{2} holds for E with respect to Ψ and $\Psi^{2}(E)$ is a G_{3}-twisted semi-stable object such that $\operatorname{deg}_{G_{3}}\left(\Psi^{2}(E)\right)=\chi\left(G_{3}, \Psi^{2}(E)\right)=0$. Moreover if E is irreducible, then $\Psi^{2}(E)$ is G_{3}-twisted stable.
Proof. We first prove that E satisfies WIT_{2} with respect to Ψ. We may assume that E is irreducible. Then we get $\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=0$ for all x^{\prime}. Hence $\Psi^{0}(E)=0$. We shall prove that $\Psi^{1}(E)=0$ by showing $\widehat{\Psi}^{i}\left(\Psi^{1}(E)\right)=0$ for $i=0,1,2$. By Lemma 6.3.2, $\widehat{\Psi}^{2}\left(\Psi^{1}(E)\right)=0$ and we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \widehat{\Psi}^{0}\left(\Psi^{1}(E)\right) \rightarrow \widehat{\Psi}^{2}\left(\Psi^{2}(E)\right) \rightarrow E \rightarrow \widehat{\Psi}^{1}\left(\Psi^{1}(E)\right) \rightarrow 0 \tag{3.63}
\end{equation*}
$$

By Lemma 3.6 .6 and Lemma 6.3.2, $\widehat{\Psi}^{0}\left(\Psi^{1}(E)\right) \in \overline{\mathfrak{F}}_{1}$ and $\widehat{\Psi}^{2}\left(\Psi^{2}(E)\right) \in \overline{\mathfrak{T}}_{1}$. Since E is 0-dimensional, $\widehat{\Psi}^{0}\left(\Psi^{1}(E)\right)$ is μ-semi-stable and $\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}^{0}\left(\Psi^{1}(E)\right)\right)=\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}^{2}\left(\Psi^{2}(E)\right)\right)=0$. By Lemma3.6.7, $\widehat{\Psi}^{0}\left(\Psi^{1}(E)\right)=$

0 . Since E is an irreducible object, $\widehat{\Psi}^{2}\left(\Psi^{2}(E)\right)=0$ or $\widehat{\Psi}^{1}\left(\Psi^{1}(E)\right)=0$. If $\widehat{\Psi}^{2}\left(\Psi^{2}(E)\right)=0$, then $\Psi^{2}(E)=0$. Since $\chi\left(G_{1}, E\right)>0$, we get a contradiction. Hence we also have $\widehat{\Psi}^{1}\left(\Psi^{1}(E)\right)=0$, which implies that $\Psi^{1}(E)=0$. Therefore WIT_{2} holds for E with respect to Ψ.

We next prove that $\Psi^{2}(E)$ is G_{3}-twisted semi-stable. Assume that there is an exact sequence

$$
\begin{equation*}
0 \rightarrow F_{1} \rightarrow \Psi^{2}(E) \rightarrow F_{2} \rightarrow 0 \tag{3.64}
\end{equation*}
$$

such that $F_{1} \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}, \operatorname{deg}_{G_{3}}\left(F_{1}\right) \geq 0$ and $F_{2} \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$. Applying $\widehat{\Psi}$ to this exact sequence, we get a long exact sequence

$$
\begin{align*}
& 0 \longrightarrow \widehat{\Psi}^{0}\left(F_{2}\right) \longrightarrow \widehat{\Psi}^{0}\left(F_{1}\right) \\
& \longrightarrow \widehat{\Psi}^{1}\left(F_{2}\right) \longrightarrow \widehat{\Psi}^{1}\left(F_{1}\right) \tag{3.65}\\
& \longrightarrow \widehat{\Psi}^{2}\left(F_{2}\right) \longrightarrow \widehat{\Psi}^{2}\left(F_{1}\right) \longrightarrow 0
\end{align*}
$$

By Lemma 6.3.2. WIT_{2} holds for $\widehat{\Psi}^{2}\left(F_{2}\right)$. Hence $\widehat{\Psi}^{2}\left(F_{2}\right) \in \overline{\mathfrak{T}}_{1}$, in particular, we have $\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}^{2}\left(F_{2}\right)\right) \geq 0$. By Lemma 6.3.2, WIT_{0} holds for $\widehat{\Psi}^{1}\left(F_{2}\right) \cong \widehat{\Psi}^{0}\left(F_{1}\right)$. Hence $\widehat{\Psi}^{1}\left(F_{2}\right) \in \overline{\mathfrak{F}}_{1}$, which implies that $\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}^{1}\left(F_{2}\right)\right) \leq 0$. Therefore $\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}\left(F_{2}\right)\right) \geq 0$. On the other hand, $\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}\left(F_{2}\right)\right)=\operatorname{deg}_{G_{3}}\left(F_{2}\right) \leq 0$. Hence $\widehat{\Psi}^{1}\left(F_{2}\right)$ is a μ^{-} semi-stable object with $\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}^{1}\left(F_{2}\right)\right)=0$ and $\operatorname{deg}_{G_{3}}\left(F_{2}\right)=0$. Then Lemma 3.6 .7 implies that $\widehat{\Psi}^{1}\left(F_{2}\right)=0$. If $\chi\left(G_{3}, F_{2}\right) \leq 0$, then rk $\widehat{\Psi}^{2}\left(F_{2}\right)=\chi\left(G_{3}, F_{2}\right)$ implies that $\chi\left(G_{3}, F_{2}\right)=0$ and $\widehat{\Psi}^{2}\left(F_{2}\right)$ is a torsion object. This in particular means that $\Psi^{2}(E)$ is G_{2}-twisted semi-stable. We further assume that E is irreducible. Since $\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}^{2}\left(F_{2}\right)\right)=0, \widehat{\Psi}^{2}\left(F_{2}\right)$ is a 0-dimensional object. Then WIT_{2} holds for $\widehat{\Psi}^{1}\left(F_{1}\right), \widehat{\Psi}^{2}\left(F_{1}\right)$ and $\widehat{\Psi}^{2}\left(F_{2}\right)$ with respect to Ψ. Since $\Psi^{2}\left(\widehat{\Psi}^{1}\left(F_{1}\right)\right)=0, \widehat{\Psi}^{1}\left(F_{1}\right)=0$. Then $\widehat{\Psi}^{2}\left(F_{2}\right)=0$ or $\widehat{\Psi}^{2}\left(F_{1}\right)=0$, which implies that $F_{1}=0$ or $F_{2}=0$. Therefore $\Psi^{2}(E)$ is G_{3}-twisted stable.

We continue the proof of (1). Assume that there is an exact sequence in $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$

$$
\begin{equation*}
0 \rightarrow F_{1} \rightarrow \mathcal{E}_{\mid X^{\prime} \times\{x\}} \rightarrow F_{2} \rightarrow 0 \tag{3.66}
\end{equation*}
$$

such that $\operatorname{deg}_{G_{3}}\left(F_{1}\right)=\chi\left(G_{3}, F_{1}\right)=0$. By the proof of Lemma 3.6.11. WIT_{2} holds for F_{1} and F_{2}. Thus we get an exact sequence

$$
\begin{equation*}
0 \rightarrow \widehat{\Psi}^{2}\left(F_{2}\right) \rightarrow \mathbb{C}_{x} \rightarrow \widehat{\Psi}^{2}\left(F_{1}\right) \rightarrow 0 \tag{3.67}
\end{equation*}
$$

Since \mathbb{C}_{x} is β-stable, $\chi\left(\beta, \widehat{\Psi}^{2}\left(F_{2}\right)\right)<0$, which implies that $\chi\left(-\Psi(\beta), F_{2}\right)>0$. Therefore $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ is $G_{3}-\Psi(\beta)$-twisted stable. Then we have an injective morphism $\phi: X \rightarrow \bar{M}_{\widehat{H}}^{G_{3}+\alpha^{\prime}}\left(w_{0}^{\vee}\right)$ by sending $x \in X$ to $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$, where $\alpha^{\prime}=-\Psi(\beta)$. By a standard argument, we see that ϕ is an isomorphism. We note that $\left[\widehat{\Psi}\left(\widehat{H}+\left(\widehat{H}, \widetilde{\xi}_{0}\right) / r_{0} \varrho_{X^{\prime}}\right)\right]_{1}$ is the pull-back of the canonical polarization on $\bar{M}_{\widehat{H}}^{G_{3}}\left(w_{0}^{\vee}\right)$. Hence under the identification $M_{\widehat{H}}^{G_{3}+\alpha^{\prime}}\left(w_{0}^{\vee}\right) \cong X, \widehat{(\widehat{H})}=H$.
(2) Assume that $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is a μ-stable local projective generator for a general $x^{\prime} \in X^{\prime}$. By Lemma 3.6.13 (2) below, we only need to prove the μ-stability of $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ for $x \in X \backslash \cup_{i} Z_{i}$. We shall study the exact sequence (3.64) in Lemma 3.6.11 where $E=\mathbb{C}_{x}$. We may assume that F_{2} satisfies $\operatorname{deg}_{G_{3}}\left(F_{2}\right)=0$ and $\chi\left(G_{3}, F_{2}\right)>0$. Then WIT_{2} holds for F_{2} by the proof of Lemma 3.6.11. We shall first prove that $\widehat{\Psi}^{1}\left(F_{1}\right)$ does not contain a 0dimensional object. Let T_{1} be the 0-dimensional subobject of $\widehat{\Psi}^{1}\left(F_{1}\right)$. Then we have a surjective morphism $\Psi^{2}\left(\widehat{\Psi}^{1}\left(F_{1}\right)\right) \rightarrow \Psi^{2}\left(T_{1}\right)$. Since WIT_{2} holds for T_{1} with respect to Ψ and $\Psi^{0}\left(\widehat{\Psi}^{0}\left(F_{1}\right)\right) \rightarrow \Psi^{2}\left(\widehat{\Psi}^{1}\left(F_{1}\right)\right)$ is surjective, we get $T_{1}=0$. By Lemma 3.6.6, $\widehat{\Psi}^{2}\left(F_{2}\right) \in \overline{\mathfrak{T}}_{1}$. Then Lemma 3.4.9 and $\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}^{2}\left(F_{2}\right)\right)=0$ imply that $\widehat{\Psi}^{2}\left(F_{2}\right)$ is an extension of a G_{1}-semi-stable object E_{1} with $\operatorname{deg}_{G_{1}}\left(E_{1}\right)=\chi\left(G_{1}, E_{1}\right)=0$ by a 0 -dimensional object T. Since $T \cap \widehat{\Psi}^{1}\left(F_{1}\right)=0, T=\mathbb{C}_{x}$ or 0 . By our assumption, $\Psi^{2}\left(E_{1}\right)$ is a torsion object. By the exact sequence

$$
\begin{equation*}
\Psi^{2}\left(E_{1}\right) \rightarrow F_{2} \rightarrow \Psi^{2}(T) \rightarrow 0 \tag{3.68}
\end{equation*}
$$

we have rk $F_{2}=\left(\operatorname{rk} \mathcal{E}_{\mid X^{\prime} \times\{x\}}\right) \operatorname{dim} T$, which implies that $\operatorname{rk} F_{2}=\operatorname{rk} \mathcal{E}_{\mid X^{\prime} \times\{x\}}$ or rk $F_{2}=0$. Therefore $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ is μ-stable.
Lemma 3.6.12. If $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, x^{\prime} \in X^{\prime}$ and $E_{i j}$ are locally free on an open subset X^{0} of X, then $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ is a local projective generator of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$ for $x \in X^{0}$.
Proof. We first note that $\mathcal{E}_{\mid X^{\prime} \times\{x\}} \in \operatorname{Coh}\left(X^{\prime}\right)$ by Theorem 3.6.1 The claim follows from the following equalities:

$$
\begin{align*}
& \operatorname{Hom}\left(\mathcal{E}_{\mid X^{\prime} \times\{x\}}, \mathbb{C}_{x^{\prime}}[k]\right)=\operatorname{Hom}\left(\Psi\left(\mathbb{C}_{x}\right), \Psi\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)[k]\right)=\operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, \mathbb{C}_{x}[k]\right)=0, \\
& \operatorname{Hom}\left(\mathcal{E}_{\mid X^{\prime} \times\{x\}}, B_{i j}^{\prime}[k]\right)=\operatorname{Hom}\left(\Psi\left(\mathbb{C}_{x}\right), \Psi\left(E_{i j}\right)[k]\right)=\operatorname{Hom}\left(E_{i j}, \mathbb{C}_{x}[k]\right)=0 \tag{3.69}
\end{align*}
$$

for $x \in X^{0}, x^{\prime} \in X^{\prime}$ and $k \neq 0$.

Lemma 3.6.13. (1) If $X=Y$ and Y^{\prime} is not smooth, then $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ is a local projective generator of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$ for all $x \in X$.
(2) If $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is a μ-stable local projective object of \mathcal{C} for a general $x^{\prime} \in X^{\prime}$, then $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ is a local projective generator of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$ for all $x \in X$.

Proof. (1) We first note that $E_{i j} \in \operatorname{Coh}(X)=\mathcal{C}$ are locally free sheaves for all i, j. Assume that $E:=\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is not locally free for a point $x^{\prime} \in X^{\prime}$. Then we have a morphism from an open subscheme Q of $\mathrm{Quot}_{E^{\vee \vee} / X / \mathbb{C}}^{n}$ to X^{\prime}, where $n=\operatorname{dim}\left(E^{\vee \vee} / E\right)$. Since $\operatorname{dim} X^{\prime}=2$, this morphism is dominant. Hence $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is non-locally free for all $x^{\prime} \in X^{\prime}$. Since $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is locally free if x^{\prime} belongs to the exceptional locus, $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ is locally free for any $x^{\prime} \in X^{\prime}$. Then the claim follows from Lemma 3.6.12,
(2) The claim follows from Lemma 3.4.9 (3), (4) and the proof of Lemma 3.6.12,

In the remaining of this subsection, we shall prove the following result.
Proposition 3.6.14. $\Psi: \mathbf{D}(X) \rightarrow \mathbf{D}\left(X^{\prime}\right)_{o p}$ induces an equivalence $\overline{\mathfrak{A}}_{1}^{\mu}[-2] \rightarrow\left(\overline{\mathfrak{A}}_{3}\right)_{o p}$.
We first note that the following two lemmas hold thanks to Theorem 3.6.1.
Lemma 3.6.15 (cf. Lem. 3.6.3). (1) Assume that $F \in \overline{\mathfrak{T}}_{3}$. Then $\operatorname{Hom}\left(F, \mathcal{E}_{\mid X^{\prime} \times\{x\}}\right)=0$ for a general $x \in X$. In particular, $\widehat{\Psi}^{0}(F)=0$.
(2) Assume that $F \in \overline{\mathfrak{F}}_{3}$. Then $\operatorname{Hom}\left(\mathcal{E}_{\mid X^{\prime} \times\{x\}}, F\right)=0$ for all $x \in X$. In particular, $\widehat{\Psi}^{2}(F)=0$.

Lemma 3.6.16 (cf. Lem. 3.6.6 Lem. 3.6.8). Let F be an object of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$.
(1) If WIT_{0} holds for F with respect to $\widehat{\Psi}$, then $F \in \overline{\mathfrak{F}}_{3}^{\mu}\left(\subset \overline{\mathfrak{F}}_{3}\right)$.
(2) If WIT_{2} holds for F with respect to $\widehat{\Psi}$, then $F \in \overline{\mathfrak{T}}_{3}$. If $\widehat{\Psi}^{2}(F)$ does not contain a 0-dimensional subobject, then $F \in \mathfrak{T}_{3}$.
Lemma 3.6.17. (1) Assume that $E \in \overline{\mathfrak{T}}_{1}^{\mu}$. Then
(a) $\Psi^{0}(E)=0$.
(b) $\Psi^{1}(E) \in \overline{\mathfrak{F}}_{3}$.
(c) $\Psi^{2}(E) \in \overline{\mathfrak{T}}_{3}$. Moreover if E does not contain a non-trivial 0-dimensional subobject, then $\Psi^{2}(E) \in \mathfrak{T}_{3}$.
(2) Assume that $E \in \overline{\mathfrak{F}}_{1}^{\mu}$. Then
(a) $\Psi^{0}(E) \in \overline{\mathfrak{F}}_{3}$.
(b) $\Psi^{1}(E) \in \overline{\mathfrak{T}}_{3}$.
(c) $\Psi^{2}(E)=0$.

Proof. We take a decomposition

$$
\begin{equation*}
0 \rightarrow F_{1} \rightarrow \Psi^{1}(E) \rightarrow F_{2} \rightarrow 0 \tag{3.70}
\end{equation*}
$$

with $F_{1} \in \overline{\mathfrak{T}}_{3}$ and $F_{2} \in \overline{\mathfrak{F}}_{3}$. Applying $\widehat{\Psi}$, we have an exact sequence

$$
\begin{align*}
& 0 \longrightarrow \widehat{\Psi}^{0}\left(F_{2}\right) \longrightarrow \widehat{\Psi}^{0}\left(\Psi^{1}(E)\right) \longrightarrow \widehat{\Psi}^{0}\left(F_{1}\right) \\
&\left.\longrightarrow \widehat{\Psi}^{1}\left(F_{2}\right) \longrightarrow \widehat{\Psi}^{1}\left(\Psi^{1}(E)\right) \longrightarrow F_{1}\right) \tag{3.71}\\
& \longrightarrow \widehat{\Psi}^{2}\left(F_{2}\right) \longrightarrow \widehat{\Psi}^{2}\left(\Psi^{1}(E)\right) \longrightarrow 0 .
\end{align*}
$$

By Lemma 3.6.15, we have $\widehat{\Psi}^{0}\left(F_{1}\right)=\widehat{\Psi}^{2}\left(F_{2}\right)=0$.
(1) Assume that $\operatorname{deg}_{\min , G_{1}}(E) \geq 0$. By Lemma 3.6.16 (2) and Lemma 3.6.9 (a) and the first claim of (c) hold. For the second claim of (c), by Lemma 3.6.16 (2), it is sufficient to prove that $\widehat{\Psi}^{2}\left(\Psi^{2}(E)\right)$ does not contain a non-trivial 0-dimensional subobject. By the exact sequence

$$
\begin{equation*}
0 \rightarrow \widehat{\Psi}^{0}\left(\Psi^{1}(E)\right) \rightarrow \widehat{\Psi}^{2}\left(\Psi^{2}(E)\right) \rightarrow E \tag{3.72}
\end{equation*}
$$

and the torsion-freeness of $\widehat{\Psi}^{0}\left(\Psi^{1}(E)\right)$, we get our claim.
We prove (b). By Lemma 6.3.2 and (a), we have $\widehat{\Psi}^{2}\left(\Psi^{1}(E)\right)=0$. Then WIT ${ }_{1}$ holds for F_{1}. We have a surjective homomorphism

$$
\begin{equation*}
E \rightarrow \widehat{\Psi}^{1}\left(\Psi^{1}(E)\right) \tag{3.73}
\end{equation*}
$$

Hence E has a quotient sheaf $\widehat{\Psi}^{1}\left(F_{1}\right)$ with $\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}^{1}\left(F_{1}\right)\right)=-\operatorname{deg}_{G_{3}}\left(F_{1}\right) \leq 0$. If $\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}^{1}\left(F_{1}\right)\right)<0$, then we see that rk $\widehat{\Psi}^{1}\left(F_{1}\right)>0$ and $E \notin \overline{\mathfrak{T}}_{1}^{\mu}$. Hence $\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}^{1}\left(F_{1}\right)\right)=-\operatorname{deg}_{G_{3}}\left(F_{1}\right)=0$. Then $F_{1} \in \overline{\mathfrak{T}}_{3}$ implies that rk $\widehat{\Psi}^{1}\left(F_{1}\right)=-\chi\left(G_{3}, F_{1}\right) \leq 0$. Since $\chi\left(G_{1}, \widehat{\Psi}^{1}\left(F_{1}\right)\right)=-\operatorname{rk} F_{1} \leq 0$, the G_{1}-twisted Hilbert polynomial of $\widehat{\Psi}^{1}\left(F_{1}\right)$ is 0 . Therefore $F_{1}=0$.
(2) Assume that $\operatorname{deg}_{\max , G_{1}}(E)<0$. By Lemma 3.6 .4 and Lemma 3.6.16, (a) and (c) hold. We prove (b). Since $\Psi^{2}(E)=0$, Lemma 6.3.2 implies that $\widehat{\Psi}^{0} \Psi^{1}(E)=0$. Hence WIT $_{1}$ holds for F_{2} and we have
an injective morphism $\widehat{\Psi}^{1}\left(F_{2}\right) \rightarrow \widehat{\Psi}^{1}\left(\Psi^{1}(E)\right) \rightarrow E$. Since $\operatorname{deg}_{G_{1}}\left(\widehat{\Psi}^{1}\left(F_{2}\right)\right) \geq 0$, we have $\widehat{\Psi}^{1}\left(F_{2}\right)=0$, which implies that $F_{2}=0$.

Proof of Proposition 3.6.14.
For $E \in \overline{\mathfrak{A}}_{1}^{\mu}$, we have an exact sequence in $\overline{\mathfrak{A}}_{1}^{\mu}$

$$
\begin{equation*}
0 \rightarrow H^{-1}(E)[1] \rightarrow E \rightarrow H^{0}(E) \rightarrow 0 \tag{3.74}
\end{equation*}
$$

Then we have an exact triangle

$$
\begin{equation*}
\Psi\left(H^{0}(E)\right)[2] \rightarrow \Psi(E[-2]) \rightarrow \Psi\left(H^{-1}(E)\right)[1] \rightarrow \Psi\left(H^{0}(E)\right)[3] \tag{3.75}
\end{equation*}
$$

Hence $\Psi^{i}(E[-2])=0$ for $i \neq-1,0$ and we have an exact sequence

$$
\begin{align*}
& 0 \longrightarrow \Psi^{1}\left(H^{0}(E)\right) \longrightarrow \Psi^{-1}(E[-2]) \longrightarrow \Psi^{0}\left(H^{-1}(E)\right) \tag{3.76}\\
& \longrightarrow \Psi^{2}\left(H^{0}(E)\right) \longrightarrow \Psi^{0}(E[-2]) \longrightarrow \Psi^{1}\left(H^{-1}(E)\right) \longrightarrow
\end{align*}
$$

By Lemme 3.6.17 $\Psi^{-1}(E[-2]) \in \overline{\mathfrak{F}}_{3}$ and $\Psi^{0}(E[-2]) \in \overline{\mathfrak{T}}_{3}$. Therefore $\Psi(E[-2]) \in\left(\overline{\mathfrak{A}}_{3}\right)_{o p}$.
Definition 3.6.18. (1) Let $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)_{w_{0}^{\vee}}^{D}$ be the full subcategory of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$ consisting of $G_{3^{-}}$ twisted semi-stable objects E with $\operatorname{deg}_{G_{3}}(E)=\chi\left(G_{3}, E\right)=0$.
(2) Let \mathcal{C}_{0} (resp. $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)_{0}^{D}$) be the full subcategory of \mathcal{C} (resp. $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$) consisting of 0dimensional objects.

Proposition 3.6.19. Ψ induces the following correspondences:

$$
\begin{align*}
\mathcal{C}_{0} & \cong\left(\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)_{w_{0}^{\vee}}^{D}\right)_{o p} \tag{3.77}\\
\mathcal{C}_{v_{0}} & \cong\left(\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)_{0}^{D}\right)_{o p}
\end{align*}
$$

Proof. By Lemma 3.6.11, $\Psi^{2}\left(\mathcal{C}_{0}\right)$ is contained in $\left(\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)_{w_{0}^{\vee}}^{D}\right)_{o p}$. It is easy to see that $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)_{w_{0}^{\vee}}^{D}$ is generated by $\Psi^{2}\left(A_{i j}\right), i, j \geq 0$ and $\Psi^{2}\left(\mathbb{C}_{x}\right), x \in X \backslash \cup_{i} Z_{i}$. Thus the first claim holds.

We have an equivalence

$$
\begin{array}{clc}
\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)_{0} & \rightarrow & \left(\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)_{0}^{D}\right)_{o p} \\
E & \mapsto & \mathbf{R H o m} \boldsymbol{\mathcal { O }}_{X}\left(E, \mathcal{O}_{X}\right)[2] \tag{3.78}
\end{array}
$$

Then the second claim is a consequence of Proposition 3.2.13 (1).

3.7. Preservation of Gieseker stability conditions.

Proposition 3.7.1. Let E be a G_{1}-twisted semi-stable object with $\operatorname{deg}_{G_{1}}(E)=0$ and $\chi\left(G_{1}, E\right)<0$. Then WIT_{1} holds for E and $\Psi^{1}(E)$ is G_{3}-twisted semi-stable. In particular, we have an isomorphism

$$
\begin{equation*}
\mathcal{M}_{H}^{G_{1}}(v)^{s s} \rightarrow \mathcal{M}_{\widehat{H}}^{G_{3}}(-\Psi(v))^{s s} \tag{3.79}
\end{equation*}
$$

which preserves the S-equivalence classes, where $v=l v_{0}+a \varrho_{X}+\left(D+\left(D / r_{0}, \xi_{0}\right) \varrho_{X}\right), l>0, a<0$.
Proof. We note that $E \in \overline{\mathfrak{F}}_{1} \cap \overline{\mathfrak{T}}_{1}^{\mu}$. By Lemma 3.6.4 and Lemma 3.6.17, WIT_{1} holds for E and $\Psi^{1}(E) \in \overline{\mathfrak{F}}_{3}$. Assume that $\Psi^{1}(E)$ is not G_{3}-twisted stable. Then there is an exact sequence in $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$

$$
\begin{equation*}
0 \rightarrow F_{1} \rightarrow \Psi^{1}(E) \rightarrow F_{2} \rightarrow 0 \tag{3.80}
\end{equation*}
$$

such that F_{1} is a G_{3}-twisted stable object with $\operatorname{deg}_{G_{3}}\left(F_{1}\right)=0$ and

$$
\begin{equation*}
0>\frac{\chi\left(G_{3}, F_{1}\right)}{\operatorname{rk} F_{1}} \geq \frac{\chi\left(G_{3}, \Psi^{1}(E)\right)}{\operatorname{rk} \Psi^{1}(E)} \tag{3.81}
\end{equation*}
$$

and $F_{2} \in \overline{\mathfrak{F}}_{3}$. Then we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \widehat{\Psi}^{1}\left(F_{2}\right) \rightarrow E \rightarrow \widehat{\Psi}^{1}\left(F_{1}\right) \rightarrow 0 \tag{3.82}
\end{equation*}
$$

Since

$$
\begin{align*}
\frac{\chi\left(G_{1}, \widehat{\Psi}^{1}\left(F_{1}\right)\right)}{\operatorname{rk}\left(\widehat{\Psi}^{1}\left(F_{1}\right)\right)} & =\frac{\mathrm{rk} F_{1}}{\chi\left(G_{3}, F_{1}\right)} \tag{3.83}\\
& \leq \frac{\operatorname{rk} \Psi^{1}(E)}{\chi\left(G_{3}, \Psi^{1}(E)\right)}=\frac{\chi\left(G_{1}, E\right)}{\mathrm{rk} E}
\end{align*}
$$

we have

$$
\begin{equation*}
\frac{\chi\left(G_{3}, F_{1}\right)}{\operatorname{rk} F_{1}}=\frac{\chi\left(G_{3}, \Psi^{1}(E)\right)}{\operatorname{rk} \Psi^{1}(E)} \tag{3.84}
\end{equation*}
$$

Hence $\Psi^{1}(E)$ is G_{3}-twisted semi-stable. Thus we have a morphism $\mathcal{M}_{H}^{G_{1}}(v)^{s s} \rightarrow \mathcal{M}_{H}^{G_{3}}(-\Psi(v))^{s s}$. It is easy to see that this morphism preserves the S-equivalence classes. By the symmetry of the conditions, we have the inverse morphism, which shows the second claim.

The following is a generalization of [Y5, Thm. 1.7].
Proposition 3.7.2. Let $w \in v\left(\mathbf{D}\left(X^{\prime}\right)\right)$ be a Mukai vector such that $\left\langle w^{2}\right\rangle \geq-2$ and

$$
\begin{equation*}
w=l w_{0}+a \varrho_{X^{\prime}}+\left(d \widehat{H}+\widehat{D}+\frac{1}{r_{0}}\left(d \widehat{H}+\widehat{D}, \xi_{0}\right) \varrho_{X^{\prime}}\right), \tag{3.85}
\end{equation*}
$$

where $l \geq 0, a>0$ and $D \in \mathrm{NS}(X) \otimes \mathbb{Q} \cap H^{\perp}$. Assume that

$$
\begin{array}{r}
d>\max \left\{\left(4 l^{2} r_{0}^{3}+1 /\left(H^{2}\right)\right), 2 r_{0}^{2} l\left(\left\langle w^{2}\right\rangle-\left(D^{2}\right)\right)\right\}, \quad \text { if } l>0, \\
a>\max \left\{\left(2 r_{0}+1\right),\left(\left\langle w^{2}\right\rangle-\left(D^{2}\right)\right) / 2+1\right\}, \quad \text { if } l=0 . \tag{3.86}
\end{array}
$$

Then
(1) $\mathcal{M}_{H}^{G_{1}}(\widehat{\Phi}(w))^{s s} \cong \mathcal{M}_{\widehat{H}}^{G_{2}}(w)^{s s}$.
(2) $\mathcal{M}_{H}^{G_{1}}(\widehat{\Phi}(w))^{s s}$ consists of local projective generators.
(3) If $\left(\widehat{H}, G_{2}\right)$ is general with respect to w, then $\mathcal{M}_{H}^{G_{1}}(\widehat{\Phi}(w))^{s s} \cong \mathcal{M}_{H+\epsilon}^{G_{1}}(\widehat{\Phi}(w))^{s s}$ for a sufficiently small relatively ample divisor ϵ.

Proof. (1) We first note that $\mathcal{F}_{\mathcal{E}}$ in [Y5] corresponds to $\widehat{\Phi}$. Since [Y5, Thm. 2.1, Thm. 2.2] are replaced by Theorem 3.5.8, 3.6.1 and since [Y5, Prop. 2.8, Prop. 2.11] also hold for our case, the same proof of Y5, Thm. 1.7] works for our case. More precisely, in order to show that $\Phi(F), F \in \mathcal{M}_{H}^{G_{1}}(\widehat{\Phi}(w))$ does not contain a 0 -dimensional subobject, we use the fact that WIT_{0} holds for 0 -dimensional object $E \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ (see Proposition 3.2.13 (1)).
(2) The proof is the same as in the proof of Y5, Rem. 2.3]. Let E be a μ-semi-stable object of \mathcal{C} such that $v(E)=\widehat{\Phi}(w)$. If $\operatorname{Ext}^{1}(S, E) \neq 0$ for an irreducible object S of \mathcal{C}, then a non-trivial extension

$$
\begin{equation*}
0 \rightarrow E \rightarrow E^{\prime} \rightarrow S \rightarrow 0 \tag{3.87}
\end{equation*}
$$

gives a μ-semi-stable object E^{\prime} with $\chi\left(G_{1}, E^{\prime}\right)>\chi\left(G_{1}, E\right)$. By Proposition [Y5, Prop. 2.8, Prop. 2.11], we get a contradiction. Hence $\operatorname{Ext}^{1}(E, S) \cong \operatorname{Ext}^{1}(S, E)^{\vee}=0$ for any irreducible object S of \mathcal{C}. Since $\operatorname{Ext}^{2}(E, S) \cong \operatorname{Hom}(S, E)^{\vee}=0$, it is sufficient to prove that $\chi(S, E)>0$. We note that $\chi(S, E)=$ $\chi(S, \widehat{\Phi}(w))=a \chi\left(S, G_{1}\right)+\left(c_{1}(S), D\right)$. Since $\left(H, c_{1}(S)\right)=0$, we have $\left|\left(c_{1}(S), D\right)^{2}\right| \leq\left|\left(c_{1}(S)^{2}\right)\left(D^{2}\right)\right|=-2\left(D^{2}\right)$. Since $\chi\left(S, G_{1}\right)>0$, it is sufficient to prove that $a>\sqrt{-2\left(D^{2}\right)}$.

We first assume that $l>0$. Then $d\left(H^{2}\right)-1>4 l^{2} r_{0}^{3}\left(H^{2}\right)$ and $d>2 r_{0}^{2} l\left(\left\langle w^{2}\right\rangle-\left(D^{2}\right)\right)=2 r_{0}^{2} l\left(d^{2}\left(H^{2}\right)-2 l a r_{0}\right)$. Hence

$$
\begin{equation*}
a>\frac{d\left(d\left(H^{2}\right)-1 /\left(2 r_{0}^{2} l\right)\right)}{2 r_{0} l}>\frac{d}{2 l r_{0}} 4 l^{2} r_{0}^{3}\left(H^{2}\right)=2 d l r_{0}^{2}\left(H^{2}\right) \tag{3.88}
\end{equation*}
$$

Hence $a>2\left(4 l^{2} r_{0}^{3}\right) l r_{0}^{2}\left(H^{2}\right)=8 r_{0}\left(l r_{0}\right)^{3} r_{0}\left(H^{2}\right) \geq 8$. If $-\left(D^{2}\right) \leq 4$, then $a>3>\sqrt{-2\left(D^{2}\right)}$. If $-\left(D^{2}\right)>4$, then $\left\langle w^{2}\right\rangle-\left(D^{2}\right) \geq-2-\left(D^{2}\right)>-\left(D^{2}\right) / 2$. Hence

$$
\begin{equation*}
a>2 d l r_{0}^{2}\left(H^{2}\right)>r_{0}\left(\left\langle w^{2}\right\rangle-\left(D^{2}\right)\right) 4\left(l r_{0}\right)^{2} r_{0}\left(H^{2}\right)>\sqrt{-2\left(D^{2}\right)} \tag{3.89}
\end{equation*}
$$

We next assume that $l=0$. Then $a>2 r_{0}+1$ and $a>\left\langle w^{2}\right\rangle / 2+1-\left(D^{2}\right) / 2 \geq-\left(D^{2}\right) / 2$. If $-\left(D^{2}\right) \geq 8$, then $a>-\left(D^{2}\right) / 2 \geq \sqrt{-2\left(D^{2}\right)}$. If $-\left(D^{2}\right)<8$, then since $a \geq 2 r_{0}+1+1 / r_{0}, \sqrt{-2\left(D^{2}\right)}<4 \leq a$.

Therefore $\chi(E, S)>0$ and E is a local projective generator of \mathcal{C}.
(3) By our assumption, $\mathcal{M}_{H}^{G_{1}}(\widehat{\Phi}(w))^{s s}=\mathcal{M}_{H}^{G_{1}}(\widehat{\Phi}(w))^{\mu-s s}$ (Y5, Cor. 2.14]) and H is a general polarization. Hence for $E \in \mathcal{M}_{H}^{G_{1}}(\widehat{\Phi}(w))^{s s}$ and a subobject E_{1} of $E, \frac{\left(c_{1}(E), H\right)}{\operatorname{rk} E}=\frac{\left(c_{1}\left(E_{1}\right), H\right)}{\operatorname{rk} E_{1}}$ implies $\frac{c_{1}(E)}{\mathrm{rk} E}=\frac{c_{1}\left(E_{1}\right)}{\mathrm{rk} E_{1}}$. Let E be a μ-semi-stable sheaf of $v(E)=\widehat{\Phi}(w)$ with respect to H. We shall prove that $E \in \mathcal{C}$. We set

$$
\Sigma:=\left\{A_{i j}[-1] \mid i, j\right\} \cap \operatorname{Coh}(X)
$$

as in Proposition 1.1.19. We assume that $\operatorname{Hom}(E, F) \neq 0$ for $F \in \Sigma$. Then there is a μ-semi-stable sheaf $E^{\prime} \in \mathcal{C} \cap \operatorname{Coh}(X)$ with respect to H fitting in an exact sequence

$$
\begin{equation*}
0 \rightarrow E^{\prime} \rightarrow E \rightarrow F^{\prime} \rightarrow 0 \tag{3.90}
\end{equation*}
$$

where $F^{\prime} \in \mathcal{C}[-1] \cap \operatorname{Coh}(X)$. Then we see that $\chi\left(G_{1}, E^{\prime}\right)>\chi(G, E)$, which is a contradiction. Therefore $E \in \mathcal{C}$. Then we can easily see that E is μ-semi-stable in \mathcal{C}.

Corollary 3.7.3. If (G, H) is general with respect to v, then $M_{H}^{G}(v)$ is isomorphic to the moduli space of usual stable sheaves on a K3 surface.

Proof. We first construct a primitive and isotropic Mukai vector u such that $\operatorname{rk} u>0$ and $(\operatorname{rk} G) c_{1}(u)-$ $(\mathrm{rk} u) c_{1}\left(G^{\vee}\right) \in \mathbb{Z} H$: We first take a primitive isotropic Mukai vector t such that $t=l v\left(G^{\vee}\right)+a \varrho_{X}$. Then for a sufficiently small $\tau, T:=M_{H}^{G^{\vee}+\tau}(t)$ is a $K 3$ surface. Let \mathcal{F} be the universal family on $T \times X$ as a twisted object. Then we have an equivalence $\Phi_{X \rightarrow T}^{\mathcal{F}^{\vee}}: \mathbf{D}(X) \rightarrow \mathbf{D}^{\beta}(T)$. We consider $\Pi:=\Phi_{T \rightarrow X}^{\mathcal{F}(n D)} \circ$ $\Phi_{X \rightarrow T}^{\mathcal{F}^{\vee}}: \mathbf{D}(X) \rightarrow \mathbf{D}(X), n \gg 0$, where we set $D:=\widehat{H}$. Then Π also induces a Hodge isometry Π : $H^{*}(X, \mathbb{Z}) \rightarrow H^{*}(X, \mathbb{Z})$. By its construction, Π preserves the subspace $\left(\mathbb{Q} t+\mathbb{Q} H+\mathbb{Q} \varrho_{X}\right) \cap H^{*}(X, \mathbb{Z})$ and $\operatorname{rk} \Pi\left(\varrho_{X}\right)>0$ for $n \gg 0$. Hence $u:=\Pi\left(\varrho_{X}\right)$ satisfies the claim. Since $c_{1}(u) / \mathrm{rk} u-c_{1}\left(G^{\vee}\right) / \mathrm{rk} G^{\vee} \in \mathbb{Q} H$, $\chi\left(u, A_{i j}^{\vee}[2]\right) / \mathrm{rk} u=\chi\left(G^{\vee}, A_{i j}^{\vee}[2]\right) / \mathrm{rk} G$. By Corollary 2.4.4 there is a local projective generator G_{u} of \mathcal{C}^{D} with $v\left(G_{u}\right)=2 u$. Since $\left\langle\Pi\left(\mathcal{O}_{X}\right), u\right\rangle=-1, X_{1}:=M_{H}^{u+\alpha}(u)$ is a fine moduli space of stable objects of \mathcal{C}^{D}. Since \mathcal{C} satisfies Assumption 3.1.1 \mathcal{C}^{D} also satisfies Assumption 3.1.1. Let \mathcal{E} be the universal family on $X \times X_{1}$. By Theorem 3.6.1, we can regard \mathcal{E} as a universal family of $v_{0}+\gamma$-twisted stable objects of $\operatorname{Per}\left(X_{1} / Y_{1}\right)^{D}$ with respect to H_{1}, where $Y_{1}:=\bar{M}_{H}^{u}(u), H_{1}:=\widehat{H}, v_{0}=v\left(\mathcal{E}_{\mid\{x\} \times X_{1}}\right)$ and γ is determined by α. Then $\left(M_{H_{1}}^{v_{0}+\gamma}\left(v_{0}\right), \widehat{H}_{1}\right)=(X, H)$. For $\widehat{\Phi}=\Phi_{X \rightarrow X_{1}}^{\mathcal{E}}$ and $\mathcal{M}_{H}^{u^{\vee}}\left(v e^{m H}\right)^{s s}$, $m \gg 0$, we shall apply Proposition 3.7.2. Then $\mathcal{M}_{H}^{u^{v}}(v)^{s s}$ is isomorphic to a moduli stack of usual semi-stable sheaves on X_{1}. Since $\mathcal{M}_{H}^{u^{\vee}}(v)^{s s}=\mathcal{M}_{H}^{G}(v)^{s s}$, we get our claim.

Since (3.86) is numerical, we can apply Proposition 3.7.2 to a family of $K 3$ surfaces.
Example 3.7.4. Let $f:(\mathcal{X}, \mathcal{H}) \rightarrow S$ be a family of polarized $K 3$ surfaces over S. Let $v_{0}:=(r, d \mathcal{H}, a)$, $\operatorname{gcd}(r, a)=1$ be a family of isotropic Mukai vectors. We set $\mathcal{X}^{\prime}:=M_{\mathcal{X} / S}^{v_{0}}\left(v_{0}\right)$. Then we have a family of polarizations \mathcal{H}^{\prime} on \mathcal{X}^{\prime}. Since $\operatorname{gcd}(r, a)=1$, there is a universal family \mathcal{E} on $\mathcal{X}^{\prime} \times{ }_{S} \mathcal{X}$ and we have a family of Fourier-Mukai transforms $\Phi_{\mathcal{X} \rightarrow \mathcal{X}^{\prime}}^{\mathcal{E}}: \mathbf{D}(\mathcal{X}) \rightarrow \mathbf{D}\left(\mathcal{X}^{\prime}\right)$. Then we can apply Proposition 3.7.1 and Proposition 3.7 .2 to families of moduli spaces over S.

We also give a generalization of [Y1, Thm. 7.6] based on Theorem 3.5.8 and Proposition 3.6.14 We set

$$
\begin{equation*}
d_{\min }:=\min \left\{\operatorname{deg}_{G_{1}}(F)>0 \mid F \in \mathbf{D}(X)\right\} \tag{3.91}
\end{equation*}
$$

Proposition 3.7.5. Assume that $\mathfrak{T}_{1}=\mathfrak{T}_{1}^{\mu}$. Let $v \in H^{*}(X, \mathbb{Z})$ be a Mukai vector of a complex such that $\operatorname{deg}_{G_{1}}(v)=d_{\text {min }}$.
(1) If $\operatorname{rk} \Phi(v) \leq 0$, then Φ induces an isomorphism

$$
\begin{equation*}
\mathcal{M}_{H}^{G_{1}}(v)^{s s} \rightarrow \mathcal{M}_{\widehat{H}}^{G_{2}}(-\Phi(v))^{s s} \tag{3.92}
\end{equation*}
$$

by sending E to $\Phi^{1}(E)$.
(2) If $\operatorname{rk} \Psi(v) \geq 0$, then Ψ induces an isomorphism

$$
\begin{equation*}
\mathcal{M}_{H}^{G_{1}}(v)^{s s} \rightarrow \mathcal{M}_{\widehat{H}}^{G_{3}}(\Psi(v))^{s s} \tag{3.93}
\end{equation*}
$$

by sending E to $\Psi^{2}(E)$.
The proof is an easy exercise. We shall give a proof in MYY, as an application of Bridgeland's stability condition.

Remark 3.7.6. In Y6, we constructed actions of Lie algebras on the cohomology groups of some moduli spaces of stable sheaves. In particular, we constructed the action on the cohomology groups of some moduli spaces of stable objects of ${ }^{-1} \operatorname{Per}(X / Y)$ in [Y6, Prop. 6.15]. Then a generalization of [Y6, Prop. 6.15] to the objects in $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ corresponds to the action in [Y6, Example 3.1.1] via Proposition 3.7.5.

4. Fourier-Mukai transforms on elliptic surfaces.

4.1. Moduli of stable sheaves of dimension 2. Let $Y \rightarrow C$ be a morphism from a normal projective surface to a smooth curve C such that a general fiber is an elliptic curve. Let $\pi: X \rightarrow Y$ be the minimal resolution. Then $\mathfrak{p}: X \rightarrow C$ is an elliptic surface over a curve C. We fix a divisor H on X which is the pull-back of an ample divisor on Y. As in section 3, let \mathcal{C} be the category in Lemma 1.1.5 satisfying Assumption 3.1.1. We also use the notation $A_{i j}$ in section 3. Let G_{1} be a locally free sheaf on X which is a local projective generator of \mathcal{C}. Let $\mathbf{e} \in K(X)_{\text {top }}$ be the topological invariant of a locally free sheaf E of rank r and degree d on a fiber of \mathfrak{p}. Thus $\operatorname{ch}(\mathbf{e})=(0, r f, d)$, where f is a fiber of \mathfrak{p}. Assume that \mathbf{e} is primitive. Then $\bar{M}_{H}^{G_{1}}(\mathbf{e})$ consists of G_{1}-twisted stable objects, if $G_{1} \in K(X)_{\text {top }} \otimes \mathbb{Q}, \mathrm{rk} G_{1}>0$ is general with respect to \mathbf{e} and H. From now on, we assume that $\chi\left(G_{1}, \mathbf{e}\right)=0$. By [O-Y, sect. 1.1], we do not lose generality.
Remark 4.1.1. We have $\bar{M}_{H}^{G_{1}}(\mathbf{e})=\bar{M}_{H+n f}^{G_{1}}(\mathbf{e})$ for all n.
Lemma 4.1.2. We set

$$
\begin{equation*}
\mathbf{e}^{\perp}:=\left\{E \in K(X)_{\mathrm{top}} \mid \chi(E, \mathbf{e})=0\right\} \tag{4.1}
\end{equation*}
$$

(1) $-\chi($,$) is symmetric on \mathbf{e}^{\perp}$.
(2) $M:=\left(\mathbb{Z} \tau\left(G_{1}\right)+\mathbb{Z} \tau\left(\mathbb{C}_{x}\right)+\mathbb{Z} \mathbf{e}\right)^{\perp} / \mathbb{Z} \mathbf{e}$ is a negative definite even lattice of rank $\rho(X)-2$.

Proof. (1) For a divisor D, we set

$$
\begin{equation*}
\nu(D):=\tau\left(\mathcal{O}_{X}(D)-\mathcal{O}_{X}\right)-\frac{\chi\left(G_{1}, \mathcal{O}_{X}(D)-\mathcal{O}_{X}\right)}{\operatorname{rk} G_{1}} \tau\left(\mathbb{C}_{x}\right) \in K(X)_{\text {top }} \otimes \mathbb{Q} \tag{4.2}
\end{equation*}
$$

Then ν induces a homomorphism

$$
\begin{equation*}
\mathrm{NS}(X) \otimes \mathbb{Q} \rightarrow K(X)_{\mathrm{top}} \otimes \mathbb{Q} \tag{4.3}
\end{equation*}
$$

such that $\operatorname{rk}(\nu(D))=0, c_{1}(\nu(D))=D$ and $\chi\left(G_{1}, \nu(D)\right)=0$. For $E \in K(X) \otimes \mathbb{Q}$, we have an expression

$$
\begin{equation*}
\tau(E)=l \tau\left(G_{1}\right)+a \tau\left(\mathbb{C}_{x}\right)+\nu(D) \tag{4.4}
\end{equation*}
$$

where $l, a \in \mathbb{Q}$ and $D \in \operatorname{NS}(X) \otimes \mathbb{Q}$. If $\chi(E, \mathbf{e})=0$, then D satisfies $(D, f)=0$. Hence we have a decomposition

$$
\begin{equation*}
\mathbf{e}^{\perp} \otimes \mathbb{Q}=\left(\mathbb{Q} \tau\left(G_{1}\right)+\mathbb{Q} \tau\left(\mathbb{C}_{x}\right)\right)+\nu\left((\mathbb{Q} f)^{\perp}\right) \tag{4.5}
\end{equation*}
$$

For $E, F \in K(X)$, we have

$$
\begin{equation*}
\chi(E, F)-\chi(F, E)=\left(\operatorname{rk} E c_{1}(F)-\operatorname{rk} F c_{1}(E), K_{X}\right) \tag{4.6}
\end{equation*}
$$

Hence the claim (1) holds.
(2) By (4.5), the signature of $\mathbf{e}^{\perp} / \mathbb{Z} \mathbf{e}$ is $(1, \rho(X)-1)$. We note that $\mathbb{Q} \tau\left(G_{1}\right)+\mathbb{Q} \tau\left(\mathbb{C}_{x}\right) \rightarrow\left(\mathbf{e}^{\perp} / \mathbb{Z} \mathbf{e}\right) \otimes \mathbb{Q}$ is injective and defines a subspace of signature $(1,1)$. Hence M is negative definite. Since $\left(\mathbb{Z} \tau\left(\mathbb{C}_{x}\right)+\mathbb{Z} \mathbf{e}\right)^{\perp}$ is an even lattice, we get our claim.
Lemma 4.1.3. (1) Assume that G_{1} is general with respect to e and H. Then $\bar{M}_{H}^{G_{1}}(\mathbf{e})$ is a smooth elliptic surface over C and $E \otimes K_{X} \cong E$ for all $E \in \bar{M}_{H}^{G_{1}}(\mathbf{e})$.
(2) Let E be a G_{1}-twisted stable object such that $\operatorname{Supp}(E) \subset \mathfrak{p}^{-1}(c), c \in C$. If $\chi\left(G_{1}, E\right)=0$ and $\left(c_{1}(E), H\right)<\left(c_{1}(\mathbf{e}), H\right)$, then $\chi(E, E)=2$ and $E \otimes K_{X} \cong E$.
Proof. (1) In Br1, Thm. 1.2], Bridgeland proved that $\bar{M}_{H}^{G_{1}}(\mathbf{e})$ is smooth and defines a Fourier-Mukai transform $\mathbf{D}\left(\bar{M}_{H}^{G_{1}}(\mathbf{e})\right) \rightarrow \mathbf{D}(X)$, if $G_{1}=\mathcal{O}_{X}$ is general with respect to e and H. We can easily generalize the arguments in [Br1, sect. 4] to the moduli space $\bar{M}_{H}^{G_{1}}(\mathbf{e})$ of G_{1}-twisted semi-stable objects, if G_{1} is general with respect to e and H. Then the claims follow.
(2) Since $\operatorname{Supp}(E) \subset \mathfrak{p}^{-1}(c)$ and $\chi\left(G_{1}, E\right)=0$, we have $E \in\left(\mathbb{Z} \tau\left(\mathbb{C}_{x}\right)+\mathbb{Z} \tau\left(G_{1}\right)+\mathbb{Z} \mathbf{e}\right)^{\perp}$. Since $\left(c_{1}(E), H\right)<$ $\left(c_{1}(\mathbf{e}), H\right)$, we get

$$
\begin{equation*}
2 \leq \chi(E, E)=\operatorname{dim} \operatorname{Hom}(E, E)+\operatorname{dim} \operatorname{Hom}\left(E, E \otimes K_{X}\right)-\operatorname{dim} \operatorname{Ext}^{1}(E, E) \tag{4.7}
\end{equation*}
$$

Hence $\operatorname{Hom}\left(E, E \otimes K_{X}\right) \neq 0$. Since $K_{X}^{\otimes m} \in \mathfrak{p}^{*}(\operatorname{Pic}(C))$ for an integer m, we see that $E \otimes K_{X}$ is a G_{1}-twisted stable object with $\tau(E)=\tau\left(E \otimes K_{X}\right)$, which implies that $E \otimes K_{X} \cong E$ and $\chi(E, E)=2$.

In the same way as in the proof of Theorem 3.1.5. we get the following results.
Corollary 4.1.4. (1) $\bar{M}_{H}^{G_{1}}(\mathbf{e})$ is a normal surface and the singular points $q_{1}, q_{2}, \ldots, q_{m}$ of $\bar{M}_{H}^{G_{1}}(\mathbf{e})$ correspond to the S-equivalence classes of properly G_{1}-twisted semi-stable objects.
(2) Let $\oplus_{j=0}^{s_{i}^{\prime}} E_{i j}^{\oplus a_{i j}^{\prime}}$ be the $\underset{\sim}{S}$-equivalence class corresponding to q_{i}. Then the matrix $\left(\chi\left(E_{i j}, E_{i k}\right)\right)_{j, k \geq 0}$ is of affine type $\tilde{A}, \tilde{D}, \tilde{E}$. We assume that $a_{i 0}=1$ for all i. Then $q_{1}, q_{2}, \ldots, q_{m}$ are rational double points of type A, D, E according as the type of the matrices $\left(\chi\left(E_{i j}, E_{i k}\right)\right)_{j, k \geq 1}$.
(3) We take a sufficiently small general $\alpha \in K(X) \otimes \mathbb{Q}$ such that $\chi(\alpha, \mathbf{e})=0$. Then $\pi^{\prime}: \bar{M}_{H}^{G_{1}+\alpha}(\mathbf{e}) \rightarrow$ $\bar{M}_{H}^{G_{1}}(\mathbf{e})$ is the minimal resolution.
(4) Assume that $a_{i 0}^{\prime}=1$ for all i and $\chi\left(\alpha, E_{i j}\right)<0$ for all $j>0$. We set

$$
\begin{equation*}
C_{i j}^{\prime}:=\left\{E \in M_{H}^{G_{1}+\alpha}(\mathbf{e}) \mid \operatorname{Hom}\left(E_{i j}, E\right) \neq 0\right\} \tag{4.8}
\end{equation*}
$$

Then $C_{i j}^{\prime}$ is a smooth rational curve such that $\left(C_{i j}^{\prime}, C_{i^{\prime} j^{\prime}}^{\prime}\right)=-\chi\left(E_{i j}, E_{i^{\prime} j^{\prime}}\right)$ and $\pi^{\prime-1}\left(q_{i}\right)=\sum_{j \geq 1} a_{i j}^{\prime} C_{i j}^{\prime}$.
Remark 4.1.5. In Theorem 3.1.5 we assume that $\chi\left(\alpha, E_{i j}\right)>0$. So the definition of $C_{i j}^{\prime}$ is different from that in Lemma 3.2.4. For the smoothness of $C_{i j}^{\prime}$, we use the moduli of coherent systems (E, V), where $E \in M_{H}^{G_{1}+\alpha}(\mathbf{e})$ and V is a 1-dimensional subspace of $\operatorname{Hom}\left(E_{i j}, E\right)$.

From now on, we take an α in Corollary 4.1.4(3) and set $X^{\prime}:=\bar{M}_{H}^{G_{1}+\alpha}(\mathbf{e}), Y^{\prime}:=\bar{M}_{H}^{G_{1}}(\mathbf{e})$. Let $\mathfrak{q}: X^{\prime} \rightarrow C$ be the structure morphism of the elliptic fibration.
4.2. Fourier-Mukai duality for an elliptic surface. Let \mathcal{E} be a universal family as a twisted sheaf on $X^{\prime} \times X$. For simplicity, we assume that it is an untwisted sheaf. We set

$$
\begin{align*}
& \Psi(E):=\mathbf{R} \operatorname{Hom}_{p_{X^{\prime}}}\left(p_{X}^{*}(E), \mathcal{E}\right)=\Phi(E)^{\vee}[-2], E \in \mathbf{D}(X) \\
& \widehat{\Psi}(F):=\mathbf{R} \operatorname{Hom}_{p_{X}}\left(p_{X^{\prime}}^{*}(F), \mathcal{E}\right), \quad F \in \mathbf{D}\left(X^{\prime}\right) \tag{4.9}
\end{align*}
$$

Lemma 4.2.1. Replacing G_{1} by $G_{1}-n \mathbb{C}_{x}, n \gg 0$, we can choose $\operatorname{det} \Psi\left(G_{1}\right)^{\vee} \in \operatorname{Pic}\left(X^{\prime}\right)$ as the pull-back of an ample line bundle on W. Let \widehat{H} be a divisor with $\mathcal{O}_{X^{\prime}}(\widehat{H})=\operatorname{det} \Psi\left(G_{1}\right)^{\vee}$.

Proof. We note that $\operatorname{det} \Psi\left(\mathbb{C}_{x}\right)=r f$. Hence $\operatorname{det} \Psi\left(G_{1}-n \mathbb{C}_{x}\right)^{\vee}=\operatorname{det} \Psi\left(G_{1}\right)^{\vee}(n r f)$. We set

$$
\begin{equation*}
\xi:=m r \operatorname{rk} G_{1}(H, f)\left(-G_{1}^{\vee}+\left(\operatorname{rk} G_{1}\right) n(n+m)\left(H^{2}\right) / 2 \varrho_{X}\right) . \tag{4.10}
\end{equation*}
$$

By (1.104), $\operatorname{det} p_{X^{\prime}!}\left(\mathcal{E} \otimes p_{X}^{*}(\xi)\right)$ is the pull-back of a polarization of Y^{\prime} for $m \gg n \gg 0$. Since $\operatorname{det} \Psi\left(\xi^{\vee}\right)=$ $\operatorname{det} p_{X^{\prime}!}\left(\mathcal{E} \otimes p_{X}^{*}(\xi)\right)$ and $-\operatorname{ch}\left(\xi^{\vee}\right) \equiv m r \operatorname{rk} G_{1}(H, f) \operatorname{ch}\left(G_{1}\right) \bmod \mathbb{Q} \varrho_{X}$, we get our claim.

Lemma 4.2.2. We set $A_{i j}^{\prime}:=\Psi\left(E_{i j}\right)[2]$.
(1) There are $\mathbf{b}_{i}^{\prime}:=\left(b_{i 1}^{\prime}, b_{i 2}^{\prime}, \ldots, b_{i s_{i}^{\prime}}^{\prime}\right), i=1, \ldots, m$ such that

$$
\begin{align*}
A_{i j}^{\prime} & =\mathcal{O}_{C_{i j}^{\prime}}\left(b_{i j}^{\prime}\right)[1], j>0 \tag{4.11}\\
A_{i 0}^{\prime} & =A_{0}\left(\mathbf{b}_{i}^{\prime}\right) .
\end{align*}
$$

(2) Irreducible objects of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}, \mathbf{b}_{1}^{\prime}, \ldots, \mathbf{b}_{m}^{\prime}\right)$ are

$$
\begin{equation*}
A_{i j}^{\prime}\left(1 \leq i \leq m, 0 \leq j \leq s_{i}^{\prime}\right), \mathbb{C}_{x^{\prime}}\left(x^{\prime} \in X^{\prime} \backslash \cup_{i} Z_{i}^{\prime}\right) \tag{4.12}
\end{equation*}
$$

Proof. It is sufficient to prove (1) by Proposition 1.2.19 By the choice of α, we have

$$
\begin{align*}
& \operatorname{Ext}^{2}\left(E_{i j}, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=0, j>0, \tag{4.13}\\
& \operatorname{Hom}\left(E_{i 0}, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=0
\end{align*}
$$

for all $x^{\prime} \in X^{\prime}$. Then the claim for $j>0$ follow from the proof of Corollary 4.1.4 (4). For $x^{\prime} \in \pi^{\prime-1}\left(q_{i}\right)$, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow F_{i} \rightarrow \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X} \rightarrow E_{i 0} \rightarrow 0 \tag{4.14}
\end{equation*}
$$

where F_{i} is a G_{1}-twisted semi-stable object which is S-equivalent to $\oplus_{j>0} E_{i j}^{\oplus_{j} a_{i j}^{\prime}}$. Applying Ψ, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \Psi\left(F_{i}\right)[1] \rightarrow A_{i 0}^{\prime} \rightarrow \mathbb{C}_{x^{\prime}} \rightarrow 0 \tag{4.15}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\operatorname{Hom}\left(A_{i 0}^{\prime}, A_{i j}^{\prime}[-1]\right)=\operatorname{Ext}^{1}\left(A_{i 0}^{\prime}, A_{i j}^{\prime}[-1]\right)=0 \tag{4.16}
\end{equation*}
$$

By Lemma 2.1.8, we get $A_{i 0}^{\prime}=A_{0}\left(\mathbf{b}_{i}^{\prime}\right)$.
We define $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ and $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D}$ as in subsection 3.2. Replacing G_{1} by G_{1}^{\prime} with $\tau\left(G_{1}^{\prime}\right)=\tau\left(G_{1}\right)-$ $n \tau\left(\mathbb{C}_{x}\right)$, we may assume that $G_{1 \mid \mathfrak{p}^{-1}(t)}, t \in C$ is a stable vector bundle for a general $t \in C$. Then $L_{2}^{\prime}=$ $\Psi\left(G_{1}\right)[1]$ is a torsion object of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right) \cap \operatorname{Coh}\left(X^{\prime}\right)$ such that $c_{1}\left(L_{2}\right)=\widehat{H}$. Indeed L_{2}^{\prime} is a coherent torsion sheaf on X^{\prime}. Since $\operatorname{Hom}\left(L_{2}^{\prime}, A_{i j}^{\prime}[-1]\right)=\operatorname{Hom}\left(E_{i j}, G_{1}\right)=0, L_{2}^{\prime} \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$.

Lemma 4.2.3. Let L_{1} be a line bundle on a smooth curve $C \in|H|$ and set $G_{2}:=\Psi\left(L_{1}\right)[1]$. Then we have

$$
\begin{align*}
\operatorname{Hom}\left(G_{2}, \mathbb{C}_{x^{\prime}}[k]\right) & =0, \quad k \neq 0 \\
\operatorname{Hom}\left(G_{2}, A_{i j}^{\prime}[k]\right) & =0, \quad k \neq 0 \tag{4.17}\\
\operatorname{dim} \operatorname{Hom}\left(G_{2}, A_{i j}^{\prime}\right) & =\left(c_{1}\left(E_{i j}\right), H\right)
\end{align*}
$$

In particular G_{2} is a local projective generator of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$.
Proof. The claim follows from the following relations:

$$
\begin{align*}
\operatorname{Hom}\left(G_{2}, \mathbb{C}_{x^{\prime}}[k]\right) & =\operatorname{Hom}\left(\Psi\left(L_{1}\right)[1], \Psi\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)[2+k]\right) \\
& =\operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, L_{1}[k+1]\right), \\
\operatorname{Hom}\left(G_{2}, A_{i j}^{\prime}[k]\right) & =\operatorname{Hom}\left(\Psi\left(L_{1}\right)[1], \Psi\left(E_{i j}\right)[2+k]\right) \tag{4.18}\\
& =\operatorname{Hom}\left(E_{i j}, L_{1}[k+1]\right) .
\end{align*}
$$

For a conveniense sake, we summalize the image of $\mathbb{C}_{x}[-2], \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, G_{1}, L_{1}$ by Ψ :

$$
\begin{align*}
\Psi\left(\mathbb{C}_{x}[-2]\right) & =\mathcal{E}_{\mid X^{\prime} \times\{x\}}, \\
\Psi\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right) & =\mathbb{C}_{x^{\prime}}[-2], \\
\Psi\left(G_{1}\right) & =L_{2}[-1], \tag{4.19}\\
\Psi\left(L_{1}\right) & =G_{2}[-1]
\end{align*}
$$

Definition 4.2.4. We set $\Psi^{i}(E):={ }^{p} H^{i}(\Psi(E)) \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ and $\widehat{\Psi}^{i}(E):={ }^{p} H^{i}(\widehat{\Psi}(E)) \in \operatorname{Per}(X / Y)$.
Lemma 4.2.5. WIT_{2} with respect to Ψ holds for all 0-dimensional objects E of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ and $\Psi^{2}(E)$ is G_{2}-twisted semi-stable. Moreover if E is an irreducible object, then $\Psi(E)[2]$ is a G_{2}-twisted stable object of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$.

Proof. It is sufficient to prove the claim for all irreducible objects E of \mathcal{C}. Since $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$ and $E_{i j}$ are purely 1-dimensional objects of $\mathcal{C}, \operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=\operatorname{Hom}\left(E, E_{i j}\right)=0$ for all $x^{\prime} \in X^{\prime}$ and i, j. Hence $\Psi^{1}(E)$ is a torsion free object of \mathfrak{C}_{2}. Since $\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}[1]\right)=0$ if $\operatorname{Supp}(E) \cap \mathfrak{p}^{-1}\left(\mathfrak{p}\left(x^{\prime}\right)\right)=\emptyset, \Psi^{1}(E)=0$. Therefore WIT_{2} holds for all 0-dimensional objects of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$.

For the G_{2}-twisted stability of $\Psi(E)[2]$, we first note that $\chi\left(G_{2}, \Psi(E)[2]\right)=\chi\left(\Psi\left(L_{1}\right)[1], \Psi(E)[2]\right)=$ $\chi\left(E, L_{1}[1]\right)=0$. Assume that there is an exact sequence

$$
\begin{equation*}
0 \rightarrow F_{1} \rightarrow \Psi^{2}(E) \rightarrow F_{2} \rightarrow 0 \tag{4.20}
\end{equation*}
$$

such that $0 \neq F_{1} \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ and $F_{2} \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ with $\chi\left(G_{2}, F_{2}\right) \leq 0$. Applying $\widehat{\Psi}$ to this exact sequence, we get a long exact sequence

$$
\begin{align*}
& 0 \longrightarrow \widehat{\Psi}^{0}\left(F_{2}\right) \longrightarrow 0 \longrightarrow \widehat{\Psi}^{0}\left(F_{1}\right) \\
& \longrightarrow \widehat{\Psi}^{1}\left(F_{2}\right) \longrightarrow \widehat{\Psi}^{1}\left(F_{1}\right) \tag{4.21}\\
& \longrightarrow \widehat{\Psi}^{2}\left(F_{2}\right) \longrightarrow \widehat{\Psi}^{2}\left(F_{1}\right) \longrightarrow 0 .
\end{align*}
$$

Since $\widehat{\Psi}^{0}\left(F_{1}\right)=0, \mathrm{WIT}_{2}$ holds for F_{2}. Since $0 \geq \chi\left(G_{2}, F_{2}\right)=\chi\left(\widehat{\Psi}\left(F_{2}\right), \widehat{\Psi}\left(G_{2}\right)\right)=\chi\left(\widehat{\Psi}\left(F_{2}\right), L_{1}[-1]\right)=$ $\left(H, c_{1}\left(\widehat{\Psi}^{2}\left(F_{2}\right)\right)\right) \geq 0$, we get $\chi\left(G_{2}, F_{2}\right)=0$ and $\widehat{\Psi}^{2}\left(F_{2}\right)$ is a 0 -dimensional object. Then $\widehat{\Psi}^{1}\left(F_{1}\right)$ is also 0 dimensional. Since E is an irreducible object of \mathfrak{C}_{1}, we have (i) $\widehat{\Psi}^{2}\left(F_{1}\right)=0$ or (ii) $\widehat{\Psi}^{2}\left(F_{1}\right) \cong E$. Since WIT $_{2}$ holds for $\widehat{\Psi}^{1}\left(F_{1}\right)$ with respect to Ψ, the first case does not hold. If $\widehat{\Psi}^{2}\left(F_{1}\right) \cong E$, then $\widehat{\Psi}^{1}\left(F_{1}\right) \cong \widehat{\Psi}^{2}\left(F_{2}\right)$. Since $\widehat{\Psi}^{0}\left(F_{1}\right)=0$, Lemma 6.3.2 implies that $\Psi^{2}\left(\widehat{\Psi}^{1}\left(F_{1}\right)\right)=0$, which implies that $F_{2}=\Psi^{2}\left(\widehat{\Psi}^{2}\left(F_{2}\right)\right)=0$. Therefore $\Psi^{2}(E)$ is G_{2}-twisted stable.

Theorem 4.2.6. We set $\mathbf{f}:=\tau\left(\mathcal{E}_{\mid X^{\prime} \times\{x\}}\right)$. Then $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ is $G_{2}-\Psi(\beta)$-twisted stable for all $x \in X$ and we have an isomorphism $X \rightarrow M_{\widehat{H}}^{G_{2}-\Psi(\beta)}(\mathbf{f})$ by sending $x \in X$ to $\mathcal{E}_{\mid X^{\prime} \times\{x\}} \in M_{\widehat{H}}^{G_{2}-\Psi(\beta)}(\mathbf{f})$.

Proof. By Lemma 4.2.5. $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ is G_{2}-twisted semi-stable. If $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ is not G_{2}-twisted stable, then $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ is S-equivalent to $\oplus_{j} \Psi^{2}\left(A_{i j}\right)^{\oplus a_{i j}}$. Let $F_{1} \neq 0$ be a G_{2}-twisted stable subobject of $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ such that $\chi\left(G_{2}, F_{1}\right)=0$. Then F_{1} is S-equivalent to $\oplus_{j} \Psi^{2}\left(A_{i j}\right)^{\oplus b_{i j}}$ and $\widehat{\Psi}\left(F_{1}\right)[2]$ is a quotient object of \mathbb{C}_{x}. Since \mathbb{C}_{x} is β-stable, $0<\chi\left(\beta, \widehat{\Psi}\left(F_{1}\right)\right)=\chi\left(\Psi(\beta), F_{1}\right)$. Therefore $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$ is $G_{2}-\Psi(\beta)$-twisted stable. Then we have an injective morphism $\phi: X \rightarrow \bar{M}_{\widehat{H}}^{G_{2}-\Psi(\beta)}(\mathbf{f})$ by sending $x \in X$ to $\mathcal{E}_{\mid X^{\prime} \times\{x\}}$. By a standard argument, we see that ϕ is an isomorphism.
4.3. Tiltings of $\mathcal{C}, \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ and their equivalence. We set $\mathfrak{C}_{1}:=\mathcal{C}$ and $\mathfrak{C}_{2}:=\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$. In this subsection, we define tiltings $\overline{\mathfrak{A}}_{1}, \widehat{\mathfrak{A}}_{2}$ of $\mathfrak{C}_{1}, \mathfrak{C}_{2}$ and show that Ψ induces a (contravariant) equivalence between them. We first define the relative twisted degree of $E \in \mathfrak{C}_{i}$ by $\operatorname{deg}_{G_{i}}(E):=\left(c_{1}\left(G_{i}^{\vee} \otimes E\right), f\right)$, and define $\mu_{\max , G_{i}}(E), \mu_{\min , G_{i}}(E)$ in a similar way.
Definition 4.3.1. (1) Let $\overline{\mathfrak{T}}_{i}$ be the full subcategory of \mathfrak{C}_{i} consisting of objects E such that (i) E is a torsion object or (ii) E is torsion free and $\mu_{\min , G_{i}}(E) \geq 0$.
(2) Let $\overline{\mathfrak{F}}_{i}$ be the full subcategory of \mathfrak{C}_{i} consisting of objects E such that (i) $E=0$ or (ii) E is torsion free and $\mu_{\max , G_{i}}(E)<0$.
Definition 4.3.2. (1) Let $\widehat{\mathfrak{T}}_{i}$ be the full subcategory of \mathfrak{C}_{i} consisting of objects E such that $\operatorname{Supp}(E)$ is contained in fibers and there is no quotient object $E \rightarrow E^{\prime}$ with $\chi\left(G_{i}, E^{\prime}\right)<0$.
(2) We set

$$
\begin{align*}
\widehat{\mathfrak{F}}_{i} & :=\left(\widehat{\mathfrak{T}}_{i}\right)^{\perp} \\
& =\left\{E \in \mathfrak{C}_{i} \mid \operatorname{Hom}\left(E^{\prime}, E\right)=0, E^{\prime} \in \widehat{\mathfrak{T}}_{i}\right\} . \tag{4.22}
\end{align*}
$$

Remark 4.3.3. We have $\widehat{\mathfrak{F}}_{i} \supset \overline{\mathfrak{F}}_{i}$ and $\widehat{\mathfrak{T}}_{i} \subset \overline{\mathfrak{T}}_{i}$.
Definition 4.3.4. $\left(\overline{\mathfrak{T}}_{i}, \overline{\mathfrak{F}}_{i}\right)$ and $\left(\widehat{\mathfrak{T}}_{i}, \widehat{\mathfrak{F}}_{i}\right)$ are torsion pairs of \mathfrak{C}_{i}. We denote the tiltings by $\overline{\mathfrak{A}}_{i}$ and $\widehat{\mathfrak{A}}_{i}$ respectively.

Then we have the following equivalence:
Proposition 4.3.5. Ψ induces an equivalence $\overline{\mathfrak{A}}_{1}[-2] \rightarrow\left(\widehat{\mathfrak{A}}_{2}\right)_{\text {op }}$.
For the proof of this proposition, we need the following properties.
Lemma 4.3.6. (1) Assume that $E \in \overline{\mathfrak{T}}_{1}$. Then $\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=0$ for a general $x^{\prime} \in X^{\prime}$.
(2) Assume that $E \in \widehat{\mathfrak{F}}_{1}$. Then $\operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, E\right)=\operatorname{Hom}\left(E_{i j}, E\right)=0$ for all $x^{\prime} \in X^{\prime}$. In particular if $E \in \overline{\mathfrak{F}}_{1}$, then $\operatorname{Hom}\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}, E\right)=\operatorname{Hom}\left(E_{i j}, E\right)=0$ for all $x^{\prime} \in X^{\prime}$.
Proof. We only prove (1). If $\operatorname{rk} E=0$, then obviously the claim holds. Let E be a torsion free object on X such that $E_{\mid f}$ is a semi-stable locally free sheaf with $\chi\left(G_{1}, E_{\mid f}\right)=0$ for a general f. Then if there is a non-zero homomorphism $\varphi: E \rightarrow \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}$, then φ is surjective and $E_{\mid f}$ is S-equivalent to $\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X} \oplus \operatorname{ker} \varphi$, where $f=\mathfrak{p}^{-1}\left(\mathfrak{q}\left(x^{\prime}\right)\right)$. Therefore $\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)=0$ for a general $x^{\prime} \in \mathfrak{q}^{-1}(\mathfrak{p}(f)) \subset Y$.
Lemma 4.3.7. Let E be an object of $\mathcal{C}=\mathfrak{C}_{1}$.
(1) ${ }^{p} H^{i}(\Psi(E))=0$ for $i \geq 3$.
(2) $H^{0}\left({ }^{p} H^{2}(\Psi(E))\right)=H^{2}(\Psi(E))$.
(3) ${ }^{p} H^{0}(\Psi(E)) \subset H^{0}(\Psi(E))$. In particular, ${ }^{p} H^{0}(\Psi(E))$ is torsion free.
(4) If $\operatorname{Hom}\left(E, E_{i j}[2]\right)=0$ for all i, j and $\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}[2]\right)=0$ for all $x^{\prime} \in X^{\prime}$, then ${ }^{p} H^{2}(\Psi(E))=0$. In particular, if $E \in \widehat{\mathfrak{F}}_{1}$, then ${ }^{p} H^{2}(\Psi(E))=0$.
(5) If E satisfies $E \in \overline{\mathfrak{T}}_{1}$, then ${ }^{p} H^{0}(\Psi(E))=0$.

Proof. By Lemma 4.2.2 $E \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ is 0 if and only if $\operatorname{Hom}\left(E, A_{i j}^{\prime}\right)=\operatorname{Hom}\left(E, \mathbb{C}_{x^{\prime}}\right)=0$ for all i, j and $x^{\prime} \in X^{\prime}$. Since

$$
\begin{align*}
\operatorname{Hom}\left(E, E_{i j}[p]\right) & \cong \operatorname{Hom}\left(\Psi(E)[p], \Psi\left(E_{i j}\right)\left(K_{X^{\prime}}\right)[2]\right)^{\vee} \cong \operatorname{Hom}\left(\Psi(E)[p], \Psi\left(E_{i j}\right)[2]\right)^{\vee}, \\
\operatorname{Hom}\left(E, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}[p]\right) & \cong \operatorname{Hom}\left(\Psi(E)[p], \Psi\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)\left(K_{X^{\prime}}\right)[2]\right)^{\vee} \cong \operatorname{Hom}\left(\Psi(E)[p], \Psi\left(\mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right)[2]\right)^{\vee}, \tag{4.23}
\end{align*}
$$

we have (1), (2) and (4). (3) is obvious. (5) follows from (3) and Lemma 4.3.6 (1).
Corollary 4.3.8. If $E \in \overline{\mathfrak{T}}_{1} \cap \widehat{\mathfrak{F}}_{1}$, then ${ }^{p} H^{i}(\Psi(E))=0$ for $i \neq 1$.
Lemma 4.3.9. Let E be an object of \mathcal{C}.
(1) If WIT_{0} holds for E with respect to Ψ, then $E \in \overline{\mathfrak{F}}_{1}$.
(2) If WIT_{2} holds for E with respect to Ψ, then $E \in \widehat{\mathfrak{T}}_{1}$.

Proof. For an object E of \mathcal{C}, there is an exact sequence

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow E \rightarrow E_{2} \rightarrow 0 \tag{4.24}
\end{equation*}
$$

such that $E_{1} \in \overline{\mathfrak{T}}_{1}$ and $E_{2} \in \overline{\mathfrak{F}}_{1}$. Applying Ψ to this exact sequence, we get a long exact sequence

$$
\begin{align*}
& 0 \longrightarrow \Psi^{0}\left(E_{2}\right) \longrightarrow \Psi^{0}(E) \longrightarrow \Psi^{0}\left(E_{1}\right) \\
& \longrightarrow \Psi^{1}\left(E_{2}\right) \longrightarrow \Psi^{1}(E) \longrightarrow \Psi^{1}\left(E_{1}\right) \tag{4.25}\\
& \longrightarrow \Psi^{2}\left(E_{2}\right) \longrightarrow \Psi^{2}(E) \longrightarrow \Psi^{2}\left(E_{1}\right) \longrightarrow 0 .
\end{align*}
$$

By Lemma 4.3.7, we have $\Psi^{0}\left(E_{1}\right)=\Psi^{2}\left(E_{2}\right)=0$. If WIT_{0} holds for E, then we get $\Psi\left(E_{1}\right)=0$. Hence (1) holds. If WIT_{2} holds for E, then we get $\Psi\left(E_{2}\right)=0$. Thus $E \in \overline{\mathfrak{T}}_{1}$. We take a decomposition

$$
\begin{equation*}
0 \rightarrow E_{1}^{\prime} \rightarrow E \rightarrow E_{2}^{\prime} \rightarrow 0 \tag{4.26}
\end{equation*}
$$

such that $E_{1}^{\prime} \in \widehat{\mathfrak{T}}_{1}$ and $E_{2}^{\prime} \in \widehat{\mathfrak{F}}_{1} \cap \overline{\mathfrak{T}}_{1}$. Then $\Psi^{i}\left(E_{2}^{\prime}\right)=0$ for $i \neq 1$ by Corollary 4.3.8. Since $\Psi^{0}\left(E_{1}^{\prime}\right)=0$, we also get $\Psi^{1}\left(E_{2}^{\prime}\right)=0$. Therefore $E_{2}^{\prime}=0$.

Lemma 4.3.10. (1) If $E \in \overline{\mathfrak{T}}_{1}$, then (1a) $\Psi^{0}(E)=0$, (1b) $\Psi^{1}(E) \in \widehat{\mathfrak{F}}_{2}$ and (1c) $\Psi^{2}(E) \in \widehat{\mathfrak{T}}_{2}$.
(2) If $E \in \overline{\mathfrak{F}}_{1}$, then (2a) $\Psi^{0}(E) \in \widehat{\mathfrak{F}}_{2}$, (2b) $\Psi^{1}(E) \in \widehat{\mathfrak{T}}_{2}$ and (2c) $\Psi^{2}(E)=0$.

Proof. (1a) and (2c) follow from Lemma 4.3.7. (2a) is easy. (1c) By Lemma 6.3.2 WIT_{2} holds for $\Psi^{2}(E)$ with respect to $\widehat{\Psi}$. By a similar claim of Lemma 4.3.9 (2), we get $\Psi^{2}(E) \in \widehat{\mathfrak{T}}_{2}$.

We next study $\Psi^{1}(E)$ for $E \in \mathcal{C}$. Assume that there is an exact sequence

$$
\begin{gather*}
0 \rightarrow F_{1} \rightarrow \Psi^{1}(E) \rightarrow F_{2} \rightarrow 0 \tag{4.27}\\
\hline \text {. }
\end{gather*}
$$

such that $F_{1} \in \widehat{\mathfrak{T}}_{2}$ and $F_{2} \in \widehat{\mathfrak{F}}_{2}$. Applying $\widehat{\Psi}$, we have a long exact sequence

$$
\begin{align*}
& 0 \widehat{\Psi}^{0}\left(F_{2}\right) \longrightarrow \widehat{\Psi}^{0}\left(\Psi^{1}(E)\right) \longrightarrow \widehat{\Psi}^{0}\left(F_{1}\right) \\
& \longrightarrow \widehat{\Psi}^{1}\left(F_{2}\right) \longrightarrow \widehat{\Psi}^{1}\left(\Psi^{1}(E)\right) \longrightarrow \widehat{\Psi}^{1}\left(F_{1}\right) \tag{4.28}\\
&\left.\longrightarrow \widehat{\Psi}^{2}\left(F_{2}\right) \longrightarrow \widehat{\Psi}^{2}\left(\Psi^{1}(E)\right) \longrightarrow F_{1}\right) \longrightarrow 0 .
\end{align*}
$$

By Theorem 4.2.6, we have similar claims to Lemma 4.3.7. Thus we have $\widehat{\Psi}^{0}\left(F_{1}\right)=\widehat{\Psi}^{2}\left(F_{2}\right)=0$.
Assume that $E \in \overline{\mathfrak{T}}_{1}$. Since $\Psi^{0}(E)=0$, Lemma 6.3.2 implies that $\widehat{\Psi}^{2}\left(\Psi^{1}(E)\right)=0$. Hence WIT_{1} holds for F_{1}. Since $0 \leq \chi\left(G_{2}, F_{1}\right)=\chi\left(\widehat{\Psi}^{1}\left(F_{1}\right), L_{1}\right)=-\left(H, c_{1}\left(\widehat{\Psi}^{1}\left(F_{1}\right)\right)\right) \leq 0, \widehat{\Psi}^{1}\left(F_{1}\right)$ is a 0 -dimensional object. If $F_{1} \neq 0$, then since $\widehat{\Psi}^{1}\left(F_{1}\right) \neq 0$, we see that $0<\chi\left(G_{1}, \widehat{\Psi}^{1}\left(F_{1}\right)\right)=\chi\left(F_{1}, L_{2}\right)=-\left(\widehat{H}, c_{1}\left(F_{1}\right)\right) \leq 0$, which is a contradiction. Therefore $F_{1}=0$.

Assume that $E \in \overline{\mathfrak{F}}_{1}$. Since $\Psi^{2}(E)=0$, Lemma 6.3.2 implies that $\widehat{\Psi}^{0}\left(\Psi^{1}(E)\right)=0$. Hence WIT_{1} holds for F_{2}. We have an injection $\widehat{\Psi}^{1}\left(\Psi^{1}(E)\right) \rightarrow E$. Since $\mu_{\max , G_{1}}(E)<0, \Psi^{1}(E)$ is zero on a generic fiber of \mathfrak{p}. Hence $\widehat{\Psi}^{1}\left(\Psi^{1}(E)\right)$ is a torsion object. Since E is torsion free, $\widehat{\Psi}^{1}\left(\Psi^{1}(E)\right)=0$. Since $\widehat{\Psi}^{0}\left(F_{1}\right)=0$, we get $\widehat{\Psi}^{1}\left(F_{2}\right)=0$, which implies that $F_{2}=0$.

Proof of Proposition 4.3.5
It is sufficient to prove that $\Psi\left(\overline{\mathfrak{T}}_{1}[-2]\right), \Psi\left(\overline{\mathfrak{F}}_{1}[-1]\right) \subset\left(\widehat{\mathfrak{A}}_{2}\right)_{o p}$. Then the claims follow from Lemma 4.3.10
4.4. Preservation of Gieseker stability conditions. We give a generalization of [Y1, Thm. 3.15]. We first recall the following well-known fact.

Lemma 4.4.1. (1) Let E be a torsion free object of \mathcal{C}. Then E is G_{1}-twisted semi-stable with respect to $H+n f, n \gg 0$ if and only if for every proper object E^{\prime} of E, one of the following conditions holds:
(a)

$$
\frac{\left(c_{1}(E), f\right)}{\operatorname{rk} E}>\frac{\left(c_{1}\left(E^{\prime}\right), f\right)}{\operatorname{rk} E^{\prime}}
$$

(b)

$$
\begin{equation*}
\frac{\left(c_{1}(E), f\right)}{\mathrm{rk} E}=\frac{\left(c_{1}\left(E^{\prime}\right), f\right)}{\mathrm{rk} E^{\prime}}, \frac{\left(c_{1}(E), H\right)}{\mathrm{rk} E}>\frac{\left(c_{1}\left(E^{\prime}\right), H\right)}{\mathrm{rk} E^{\prime}} \tag{4.30}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\frac{\left(c_{1}(E), f\right)}{\operatorname{rk} E}=\frac{\left(c_{1}\left(E^{\prime}\right), f\right)}{\operatorname{rk} E^{\prime}}, \frac{\left(c_{1}(E), H\right)}{\operatorname{rk} E}=\frac{\left(c_{1}\left(E^{\prime}\right), H\right)}{\operatorname{rk} E^{\prime}}, \frac{\chi\left(G_{1}, E\right)}{\operatorname{rk} E} \geq \frac{\chi\left(G_{1}, E^{\prime}\right)}{\mathrm{rk} E^{\prime}} \tag{4.31}
\end{equation*}
$$

(2) Let F be a 1-dimensional object of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ with $\left(c_{1}(F), f\right) \neq 0$. Then F is G_{2}-twisted semistable with respect to $\widehat{H}+n f, n \gg 0$ if and only if for every proper subobject F^{\prime} of F, one of the following conditions holds:
(a)

$$
\begin{equation*}
\left(c_{1}\left(F^{\prime}\right), f\right) \frac{\chi\left(G_{2}, F\right)}{\left(c_{1}(F), f\right)}>\chi\left(G_{2}, F^{\prime}\right) \tag{4.32}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\left(c_{1}\left(F^{\prime}\right), f\right) \frac{\chi\left(G_{2}, F\right)}{\left(c_{1}(F), f\right)}=\chi\left(G_{2}, F^{\prime}\right),\left(c_{1}\left(F^{\prime}\right), \widehat{H}\right) \frac{\chi\left(G_{2}, F\right)}{\left(c_{1}(F), \widehat{H}\right)}>\chi\left(G_{2}, F^{\prime}\right) \tag{4.33}
\end{equation*}
$$

Lemma 4.4.2. Let F be a purely 1-dimensional G_{2}-twisted semi-stable object such that $\left(c_{1}(F), f\right)>0$ and $\chi\left(G_{2}, F\right)<0$. Then WIT_{1} holds for F with respect to $\widehat{\Psi}$ and $\widehat{\Psi}^{1}(F)$ is torsion free.
Proof. By Lemma 4.4.1 (2), $F \in \widehat{\mathfrak{F}}_{2}$. By Theorem4.2.6, similar claims to Lemma 4.3.7 Corollary 4.3.8 and Lemma 4.3.9 hold for $\widehat{\Psi}$. Hence WIT_{1} holds for F. Assume that there is an exact sequence

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow \widehat{\Psi}^{1}(F) \rightarrow E_{2} \rightarrow 0 \tag{4.34}
\end{equation*}
$$

such that E_{1} is the torsion object of $\widehat{\Psi}^{1}(F)$. Since $\widehat{\Psi}^{1}(F)_{\mid f}$ is a semi-stable vector bundle of $\operatorname{deg}\left(G_{1}^{\vee} \otimes\right.$ $\left.\widehat{\Psi}^{1}(F)_{\mid f}\right)=0$ for a general fiber f of $\mathfrak{p}, \operatorname{Supp}\left(E_{1}\right)$ is contained in fibers. Since $E_{1} \in \overline{\mathfrak{T}}_{1}$ and $E_{2} \in \widehat{\mathfrak{F}}_{1}, \operatorname{WIT}_{1}$ holds for E_{1}, E_{2} and we have a quotient $F \rightarrow \Psi^{1}\left(E_{1}\right)$. By our assumption on F, we get $\chi\left(G_{2}, \Psi^{1}\left(E_{1}\right)\right) \geq 0$. On the other hand, $\chi\left(G_{2}, \Psi^{1}\left(E_{1}\right)\right)=\chi\left(E_{1}, L_{1}\right)=-\left(H, c_{1}\left(E_{1}\right)\right) \leq 0$. Hence E_{1} is a 0-dimensional object. Then we get $0<\chi\left(G_{1}, E_{1}\right)=\chi\left(\Psi^{1}\left(E_{1}\right), L_{2}\right)=-\left(\widehat{H}, c_{1}\left(\Psi^{1}\left(E_{1}\right)\right)\right) \leq 0$, which is a contradiction.

Lemma 4.4.3. Let F be a 1-dimensional object of $\operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$. Then

$$
\begin{align*}
\left(c_{1}(F), f\right) & =\operatorname{rk}(\widehat{\Psi}(F)[1]) \\
\left(c_{1}(F), \widehat{H}\right) & =-\chi\left(F, L_{2}\right)=-\chi\left(G_{1}, \widehat{\Psi}(F)[1]\right) \tag{4.35}\\
\chi\left(G_{2}, F\right) & =\chi\left(\widehat{\Psi}(F)[1], L_{1}\right)=-\left(c_{1}(\widehat{\Psi}(F)[1]), H\right)+\operatorname{rk}(\widehat{\Psi}(F)[1]) \chi\left(L_{1}\right)
\end{align*}
$$

Proposition 4.4.4. Let $w \in K\left(X^{\prime}\right)_{\text {top }}$ be a topological invariant of a 1-dimensional object. Assume that $\chi\left(G_{2}, w\right)<0$. Then for $n \gg 0$, we have an isomorphism

$$
\begin{equation*}
\mathcal{M}_{H+n f}^{G_{1}}(\widehat{\Psi}(-w))^{s s} \rightarrow \mathcal{M}_{\widehat{H}+n f}^{G_{2}}(w)^{s s} \tag{4.36}
\end{equation*}
$$

which preserves the S-equivalence classes.
Proof. Let E be a G_{1}-twisted semi-stable object with $\tau(E)=\widehat{\Psi}(-w)$. Then since $E_{\mid f}$ is a semi-stable locally free sheaf with $d \operatorname{rk} E-r \operatorname{deg}\left(E_{\mid f}\right)=0$ for a general fiber, we have $E \in \overline{\mathfrak{T}}_{1} \cap \widehat{\mathfrak{F}}_{1}$. By Corollary 4.3.8, WIT ${ }_{1}$ holds for E with respect to Ψ. Assume that there is an exact sequence

$$
\begin{equation*}
0 \rightarrow F_{1} \rightarrow \Psi^{1}(E) \rightarrow F_{2} \rightarrow 0 \tag{4.37}
\end{equation*}
$$

By Lemma 4.3.10, $\Psi^{1}(E) \in \widehat{\mathfrak{F}}_{2}$, which implies that $F_{1} \in \widehat{\mathfrak{F}}_{2}$. Since $\operatorname{rk} \Psi^{1}(E)=0, F_{1}, F_{2} \in \overline{\mathfrak{T}}_{2}$. In particular, $F_{1} \in \overline{\mathfrak{T}}_{2} \cap \widehat{\mathfrak{F}}_{2}$. Then similar claim to Corollary 4.3.8 implies that WIT_{1} holds for F_{1}. Hence we get an exact sequence

$$
\begin{equation*}
0 \rightarrow \widehat{\Psi}^{1}\left(F_{2}\right) \rightarrow E \xrightarrow{\varphi} \widehat{\Psi}^{1}\left(F_{1}\right) \rightarrow \widehat{\Psi}^{2}\left(F_{2}\right) \rightarrow 0 \tag{4.38}
\end{equation*}
$$

By Lemma 4.3.10, $\widehat{\Psi}^{2}\left(F_{2}\right) \in \widehat{\mathfrak{T}}_{1}$. Hence $\mathrm{rk} \widehat{\Psi}^{1}\left(F_{1}\right)=\operatorname{rk} \operatorname{im} \varphi$. By (4.35), we have the following equivalences.

$$
\begin{align*}
& \left(c_{1}\left(F_{1}\right), f\right) \frac{\chi\left(G_{2}, \Psi^{1}(E)\right)}{\left(c_{1}(F), f\right)} \leq \chi\left(G_{2}, F_{1}\right) \Longleftrightarrow \operatorname{rk} \widehat{\Psi}^{1}\left(F_{1}\right) \frac{\left(c_{1}(E), H\right)}{\operatorname{rk} E} \geq\left(c_{1}\left(\widehat{\Psi}^{1}\left(F_{1}\right)\right), H\right) \tag{4.39}\\
& \left(c_{1}\left(F_{1}\right), \widehat{H}\right) \frac{\chi\left(G_{2}, \Psi^{1}(E)\right)}{\left(c_{1}\left(\Psi^{1}(E)\right), \widehat{H}\right)} \leq \chi\left(G_{2}, F_{1}\right) \Longleftrightarrow-\chi\left(G_{1}, \widehat{\Psi}^{1}\left(F_{1}\right)\right) \frac{\chi\left(G_{2}, \Psi^{1}(E)\right)}{-\chi\left(G_{1}, E\right)} \leq \chi\left(G_{2}, F_{1}\right) . \tag{4.40}
\end{align*}
$$

If the equality holds in (4.39), then $\chi\left(G_{2}, \Psi^{1}(E)\right)<0$ implies that (4.40) is equivalent to

$$
\begin{equation*}
\frac{\chi\left(G_{1}, \widehat{\Psi}^{1}\left(F_{1}\right)\right)}{\chi\left(G_{1}, E\right)} \geq \frac{\operatorname{rk} \widehat{\Psi}^{1}\left(F_{1}\right)}{\operatorname{rk} E} \tag{4.41}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\frac{\chi\left(G_{1}, \widehat{\Psi}^{1}\left(F_{1}\right)\right)}{\operatorname{rk} \widehat{\Psi}^{1}\left(F_{1}\right)} \leq \frac{\chi\left(G_{1}, E\right)}{\operatorname{rk} E} \tag{4.42}
\end{equation*}
$$

by $-\chi\left(G_{1}, E\right)>0$. Since

$$
\begin{equation*}
\frac{\chi\left(G_{1}, \operatorname{im} \varphi(n H)\right)}{\operatorname{rkim} \varphi} \leq \frac{\chi\left(G_{1}, \widehat{\Psi}^{1}\left(F_{1}\right)(n H)\right)}{\operatorname{rk} \widehat{\Psi}^{1}\left(F_{1}\right)}, n \gg 0 \tag{4.43}
\end{equation*}
$$

we see that φ is surjective and the equalities hold for (4.39), (4.40). Therefore $\Psi^{1}(E)$ is G_{2}-twisted semistable.

Conversely let F be a G_{2}-twisted semi-stable object with $\tau(F)=w$. By Lemma 4.4.2, WIT $_{1}$ holds for F with respect to $\widehat{\Psi}$ and $\widehat{\Psi}^{1}(F)$ is a torsion free object whose restriction to a general fiber is stable. If $\widehat{\Psi}^{1}(E)$ is not G_{1}-twisted semi-stable, then we have an exact sequence

$$
\begin{equation*}
0 \rightarrow E_{1} \rightarrow \widehat{\Psi}^{1}(F) \rightarrow E_{2} \rightarrow 0 \tag{4.44}
\end{equation*}
$$

such that $E_{i} \in \overline{\mathfrak{T}}_{1} \cap \widehat{\mathfrak{F}}_{1}$. By using Lemme4.4.3, we get the following equivalences:

$$
\begin{align*}
& \frac{\left(c_{1}\left(\widehat{\Psi}^{1}(F)\right), H\right)}{\mathrm{rk} \widehat{\Psi}^{1}(F)} \leq \frac{\left(c_{1}\left(E_{1}\right), H\right)}{\operatorname{rk} E_{1}} \Longleftrightarrow \frac{\chi\left(G_{2}, F\right)}{\left(c_{1}(F), f\right)} \geq \frac{\chi\left(G_{2}, \Psi^{1}\left(E_{1}\right)\right)}{\left(c_{1}\left(\Psi^{1}\left(E_{1}\right)\right), f\right)} \tag{4.45}\\
& \frac{\chi\left(G_{1}, \widehat{\Psi}^{1}(F)\right)}{\mathrm{rk} \widehat{\Psi}^{1}(F)} \leq \frac{\chi\left(G_{1}, E_{1}\right)}{\operatorname{rk} E_{1}} \Longleftrightarrow \frac{\left(c_{1}(F), \widehat{H}\right)}{\left(c_{1}(F), f\right)} \geq \frac{\left(c_{1}\left(\Psi^{1}\left(E_{1}\right)\right), \widehat{H}\right)}{\left(c_{1}\left(\Psi^{1}\left(E_{1}\right)\right), f\right)} \tag{4.46}
\end{align*}
$$

If the equality holds in (4.45), then (4.46) is equivalent to

$$
\begin{equation*}
\frac{\chi\left(G_{2}, F\right)}{\left(c_{1}(F), \widehat{H}\right)} \geq \frac{\chi\left(G_{2}, \Psi^{1}\left(E_{1}\right)\right)}{\left(c_{1}\left(\Psi^{1}\left(E_{1}\right)\right), \widehat{H}\right)} \tag{4.47}
\end{equation*}
$$

by $\chi\left(G_{2}, F\right)<0$. Therefore $\widehat{\Psi}^{1}(F)$ is G_{1}-twisted semi-stable.

5. A CATEGORY OF EQUIVARIANT COHERENT SHEAVES.

5.1. Morita equivalence for G-sheaves. Let X be a smooth projective surface and G a finite group acting on X. Assume that $G \rightarrow \operatorname{Aut}(X)$ is injective and $\operatorname{Stab}(x), x \in X$ acts trivally on $\left(K_{X}\right)_{\mid\{x\}}$, that is, K_{X} is the pull-back of a line bundle on $Y:=X / G$. By our assumption, all elements of G have at most isolated fixed points sets. Let $R(G)$ be the representation ring of G and (,) the natural inner product. Let $K_{G}(X)$ be the Grothendieck group of G-sheaves and $K_{G}(X)_{\text {top }}$ its image to the Grothendieck group of topological G-vector bundles.

Definition 5.1.1. For G-sheaves E and F on X,
(1) $\operatorname{Ext}_{G}^{i}(E, F)$ is the G-invariant part of $\operatorname{Ext}^{i}(E, F)$.
(2) $\chi_{G}(E, F):=\sum_{i}(-1)^{i} \operatorname{dim} \operatorname{Ext}_{G}^{i}(E, F)$ is the Euler characteristic of the G-invariant cohomology groups of E, F. We also set $\chi_{G}(E):=\chi_{G}\left(\mathcal{O}_{X}, E\right)$.

Remark 5.1.2. If $K_{X} \cong \mathcal{O}_{X}$ in $\operatorname{Coh}_{G}(X)$, then $\chi_{G}(, \quad)$ is symmetric.
Let $\varpi: X \rightarrow Y$ be the quotient map. We set

$$
\begin{equation*}
\varpi_{*}\left(\mathcal{O}_{X}\right)[G]:=\left\{\sum_{g \in G} f_{g}(x) g \mid f_{g}(x) \in \varpi_{*}\left(\mathcal{O}_{X}\right)\right\} \tag{5.1}
\end{equation*}
$$

$\varpi_{*}\left(\mathcal{O}_{X}\right)[G]$ is an $\mathcal{O}_{Y \text {-algebra }}$ whose multiplication is defined by

$$
\begin{equation*}
\left(\sum_{g \in G} f_{g}(x) g\right) \cdot\left(\sum_{g^{\prime} \in G} f_{g^{\prime}}^{\prime}(x) g^{\prime}\right):=\sum_{g, g^{\prime} \in G} f_{g}(x) f_{g^{\prime}}^{\prime}\left(g^{-1} x\right) g g^{\prime} \tag{5.2}
\end{equation*}
$$

We note that $\epsilon:=\frac{1}{\# G} \sum_{g \in G} g$ satisfies $g \epsilon=\epsilon$ for all $g \in G$. By the injective homomorphism

$$
\begin{equation*}
\varpi_{*}\left(\mathcal{O}_{X}\right) \rightarrow \varpi_{*}\left(\mathcal{O}_{X}\right) \epsilon\left(\subset \varpi_{*}\left(\mathcal{O}_{X}\right)[G]\right) \tag{5.3}
\end{equation*}
$$

we have an action of $\varpi_{*}\left(\mathcal{O}_{X}\right)[G]$ on $\varpi_{*}\left(\mathcal{O}_{X}\right)$:

$$
\begin{equation*}
\left(\sum_{g \in G} f_{g}(x) g\right) \cdot f(x):=\sum_{g \in G} f_{g}(x) f\left(g^{-1} x\right) \tag{5.4}
\end{equation*}
$$

Thus we have a homomorphism

$$
\begin{equation*}
\varpi_{*}\left(\mathcal{O}_{X}\right)[G] \rightarrow \operatorname{Hom}_{\mathcal{O}_{Y}}\left(\varpi_{*}\left(\mathcal{O}_{X}\right), \varpi_{*}\left(\mathcal{O}_{X}\right)\right) \tag{5.5}
\end{equation*}
$$

Lemma 5.1.3. $\varpi_{*}\left(\mathcal{O}_{X}\right)[G] \cong \operatorname{Hom}_{\mathcal{O}_{Y}}\left(\varpi_{*}\left(\mathcal{O}_{X}\right), \varpi_{*}\left(\mathcal{O}_{X}\right)\right)$.
Proof. We first prove the claim over the smooth locus Y^{sm} of Y. We note that $\# \varpi^{-1}(y)=\# G, y \in Y^{\mathrm{sm}}$. We take a point $z \in \varpi^{-1}(y)$. Then $\varpi_{*}\left(\mathcal{O}_{X}\right)_{\mid y}=\mathcal{O}_{\varpi^{-1}(y)}$ is identified with $\oplus_{g \in G} \mathbb{C}_{g z}$ as $\mathbb{C}[G]$-modules. Let $\chi_{u}(x)$ be the characteristic function of a point $u \in X$. Then $\left\{\chi_{g z} \mid g \in G\right\}$ is the base of $\oplus_{g \in G} \mathbb{C}_{g z}$ and $f(x) \in \mathcal{O}_{\varpi^{-1}(y)}$ is decomposed into $f(x)=\sum_{g \in G} f(g z) \chi_{g z}(x)$. Since

$$
\begin{equation*}
\left(\chi_{g^{\prime} z}(x)\left(g^{\prime} g^{-1}\right)\right) \cdot\left(\sum_{h \in G} f(h z) \chi_{h z}(x)\right)=f(g z) \chi_{g^{\prime} z}(x) \tag{5.6}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\left(\varpi_{*}\left(\mathcal{O}_{X}\right)[G]\right)_{\mid y} \rightarrow \operatorname{Hom}\left(\varpi_{*}\left(\mathcal{O}_{X}\right)_{\mid y}, \varpi_{*}\left(\mathcal{O}_{X}\right)_{\mid y}\right) \tag{5.7}
\end{equation*}
$$

is an isomorphism. Since $\varpi_{*}\left(\mathcal{O}_{X}\right)[G]$ and $\operatorname{Hom}_{\mathcal{O}_{Y}}\left(\varpi_{*}\left(\mathcal{O}_{X}\right), \varpi_{*}\left(\mathcal{O}_{X}\right)\right)$ are reflexive sheaves on Y, we get the claim.

We set $\mathcal{A}:=\varpi_{*}\left(\mathcal{O}_{X}\right)[G] \cong \operatorname{Hom}_{\mathcal{O}_{Y}}\left(\varpi_{*}\left(\mathcal{O}_{X}\right), \varpi_{*}\left(\mathcal{O}_{X}\right)\right)$.
Lemma 5.1.4. We have an equivalence

$$
\begin{array}{rll}
\varpi_{*}: \quad \operatorname{Coh}_{G}(X) & \cong \operatorname{Coh}_{\mathcal{A}}(Y) \tag{5.8}\\
E & \mapsto \varpi_{*}(E)
\end{array}
$$

whose inverse is $\varpi^{-1}: \operatorname{Coh}_{\mathcal{A}}(Y) \rightarrow \operatorname{Coh}_{G}(X)$. In particular, we have an isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{G}\left(E_{1}, E_{2}\right)=\operatorname{Hom}_{\mathcal{A}}\left(\varpi_{*}\left(E_{1}\right), \varpi_{*}\left(E_{2}\right)\right), E_{1}, E_{2} \in \operatorname{Coh}_{G}(X) \tag{5.9}
\end{equation*}
$$

Proof. Since the problem is local, we may assume that Y is affine. Then X is also affine. For $F \in \operatorname{Coh}_{\mathcal{A}}(Y)$, $H^{0}(Y, F)$ is a $H^{0}\left(Y, \varpi_{*}\left(\mathcal{O}_{X}\right)\right)[G]$-module. Hence $H^{0}\left(X, \varpi^{-1}(F)\right)=H^{0}(Y, F)$ is a $H^{0}\left(X, \mathcal{O}_{X}\right)[G]$-module, which implies that $\varpi^{-1}(F) \in \operatorname{Coh}_{G}(X)$. Then it is easy to see that ϖ^{-1} is the inverse of ϖ_{*}.

By Lemma 5.1.4, we have an equivalence $\varpi_{*}: \mathbf{D}_{G}(X) \rightarrow \mathbf{D}_{\mathcal{A}}(Y)$. In particular,

$$
\begin{equation*}
\chi_{G}\left(E_{1}, E_{2}\right)=\sum_{i}(-1)^{i} \operatorname{dim} \operatorname{Hom}_{\mathcal{A}}\left(\varpi_{*}\left(E_{1}\right), \varpi_{*}\left(E_{2}\right)[i]\right), E_{1}, E_{2} \in \operatorname{Coh}_{G}(X) . \tag{5.10}
\end{equation*}
$$

For a representation $\rho: G \rightarrow G L\left(V_{\rho}\right)$ of G, we define a G-linearization on $\mathcal{O}_{X} \otimes V_{\rho}$ in a usual way. Thus we define the action of G on $\varpi_{*}\left(\mathcal{O}_{X} \otimes V_{\rho}\right)$ as

$$
\begin{equation*}
g \cdot(f(x) \otimes v):=f\left(g^{-1} x\right) \otimes g v, g \in G, f(x) \in \varpi_{*}\left(\mathcal{O}_{X}\right), v \in V_{\rho} \tag{5.11}
\end{equation*}
$$

Then $\mathcal{O}_{X} \otimes \mathbb{C}[G]$ is a G-sheaf such that $\varpi_{*}\left(\mathcal{O}_{X} \otimes \mathbb{C}[G]\right)=\mathcal{A}$ and we have a decomposition

$$
\begin{equation*}
\mathcal{O}_{X} \otimes \mathbb{C}[G]=\bigoplus_{i}\left(\mathcal{O}_{X} \otimes V_{\rho_{i}}\right)^{\oplus \operatorname{dim} \rho_{i}} \tag{5.12}
\end{equation*}
$$

where ρ_{i} are irreducible representations of G.
Definition 5.1.5. For a G-sheaf E and a representation $\rho: G \rightarrow G L\left(V_{\rho}\right), E \otimes \rho$ denotes the G-sheaf $E \otimes_{\mathcal{O}_{X}}\left(\mathcal{O}_{X} \otimes V_{\rho}\right)$.

Since $\varpi_{*}\left(\mathcal{O}_{X} \otimes \rho_{i}\right)$ are direct summands of \mathcal{A}, we get the following lemma.
Lemma 5.1.6. (1) $\mathcal{A}_{i}:=\varpi_{*}\left(\mathcal{O}_{X} \otimes \rho_{i}\right)$ are local projective objects of $\operatorname{Coh}_{\mathcal{A}}(Y)$.
(2) $\bigoplus_{i} \varpi_{*}\left(\mathcal{O}_{X} \otimes \rho_{i}\right)^{\oplus r_{i}}$ is a local projective generator of $\operatorname{Coh}_{\mathcal{A}}(Y)$ if and only if $r_{i}>0$ for all i.

For a local projective generator \mathcal{B} of $\operatorname{Coh}_{\mathcal{A}}(Y)$, we set $\mathcal{A}^{\prime}:=\mathcal{H o m}_{\mathcal{A}}(\mathcal{B}, \mathcal{B})$. Then we have an equivalence

$$
\begin{array}{cl}
\operatorname{Coh}_{\mathcal{A}}(Y) & \rightarrow \operatorname{Coh}_{\mathcal{A}^{\prime}}(Y) \\
E & \mapsto \mathcal{H o m}_{\mathcal{A}}(\mathcal{B}, E) . \tag{5.13}
\end{array}
$$

5.2. Stability for G-sheaves. Let α be an element of $R(G) \otimes \mathbb{Q}$.

Definition 5.2.1. Let $\mathcal{O}_{X}(1)$ be the pull-back of an ample line bundle on Y. A coherent G-sheaf E is α-stable, if E is purely d-dimensional and

$$
\begin{equation*}
\frac{\chi_{G}\left(F(n) \otimes \alpha^{\vee}\right)}{a_{d}(F)}<\frac{\chi_{G}\left(E(n) \otimes \alpha^{\vee}\right)}{a_{d}(E)}, n \gg 0 \tag{5.14}
\end{equation*}
$$

for all proper subsheaf $F \neq 0$, where $a_{d}(*)$ is the coefficient of n^{d} of the Hilbert polynomial $\chi_{G}(*(n))$. We also define the α-semi-stability as usual.

Remark 5.2.2. Assume that $\alpha=\sum_{i} r_{i} \rho_{i}, r_{i}>0$. We set $\mathcal{B}:=\oplus_{i} \mathcal{A}_{i}^{\oplus r_{i}}$ and $\mathcal{A}^{\prime}:=\mathcal{H o m}_{\mathcal{A}}(\mathcal{B}, \mathcal{B})$. Under the equivalence

$$
\begin{align*}
& \operatorname{Coh}_{G}(X) \rightarrow \tag{5.15}\\
& E \mapsto \\
& \operatorname{Coh}_{\mathcal{A}^{\prime}}(Y) \tag{5.16}\\
& \mathcal{H o m}_{\mathcal{A}}\left(\mathcal{B}, \varpi_{*}(E)\right) \\
& \chi_{G}\left(E(n) \otimes \alpha^{\vee}\right)=\chi\left(\mathcal{H o m}_{\mathcal{A}}\left(\mathcal{B}, \varpi_{*}(E)\right)(n)\right)
\end{align*}
$$

implies that α-twisted stability of E corresponds to the stability of \mathcal{A}^{\prime}-module $\mathcal{H o m}_{\mathcal{A}}\left(\mathcal{B}, \varpi_{*}(E)\right)$.
For a coherent G-sheaf E of dimension 0 , we also have a refined notion of stability, which also comes from the stability of 0-dimensional objects in $\operatorname{Coh}_{\mathcal{A}}(Y)$.

Definition 5.2.3. Let $\rho_{\text {reg }}$ be the regular representation of G. A coherent G-sheaf E of dimension 0 is ($\rho_{\text {reg }}, \alpha$)-stable, if

$$
\begin{equation*}
\frac{\chi_{G}\left(F \otimes \alpha^{\vee}\right)}{\chi_{G}\left(F \otimes \rho_{\mathrm{reg}}^{\vee}\right)}<\frac{\chi_{G}\left(E \otimes \alpha^{\vee}\right)}{\chi_{G}\left(E \otimes \rho_{\mathrm{reg}}^{\vee}\right)} \tag{5.17}
\end{equation*}
$$

for a proper subsheaf $F \neq 0$.
By [S, Thm. 4.7] and Proposition 1.6.1, we get the following theorem.
Theorem 5.2.4. (1) Assume that no contains every irreducible representation for a sufficiently large n. Then there is a coarse moduli space $\bar{M}_{H}^{\alpha}(v)$ of α-semi-stable G-sheaves E with $v(E)=v . \bar{M}_{H}^{\alpha}(v)$ is a projective scheme. We denote the open subscheme consisting of α-stable G-sheaves by $M_{H}^{\alpha}(v)$.
(2) Assume that v is a 0-dimensional vector. Then there is a coarse moduli space $\bar{M}_{H}^{\rho_{\mathrm{reg}, \alpha}}(v)$ of $\left(\rho_{\mathrm{reg}}, \alpha\right)$ -semi-stable G-sheaves E with $v(E)=v . \bar{M}_{H}^{\rho_{\text {reg }}, \alpha}(v)$ is a projective scheme. We denote the open subscheme consisting of $\left(\rho_{\mathrm{reg}}, \alpha\right)$-stable G-sheaves by $M_{H}^{\rho_{\mathrm{reg}}, \alpha}(v)$.
(3) If $K_{X} \cong \mathcal{O}_{X}$ in $\operatorname{Coh}_{G}(X)$, then $M_{H}^{\alpha}(v)$ and $M_{H}^{\rho_{\text {reg }}, \alpha}(v)$ are smooth of dimension $-\chi_{G}(v, v)+2$ with holomorphic symplectic structures.
Remark 5.2.5. There is another construction due to Inaba In.
For a smooth point y of Y, let v_{0} be the topological invariant of $\mathcal{O}_{\varpi^{-1}(y)}$.

Lemma 5.2.6. A 0 -dimensional G-sheaf E is v_{0}-twisted stable if and only if E is an irreducible object of $\operatorname{Coh}_{G}(X)$.

Proof. Let E be a G-sheaf of dimension 0 . Then $\chi_{G}\left(E \otimes v_{0}^{\vee}\right) / \chi_{G}\left(E \otimes \rho_{r e g}^{\vee}\right)=1$. Hence the claim holds.
Definition 5.2.7. Let G - $\operatorname{Hilb}_{X}^{\rho}$ be the G-Hilbert scheme parametrizing 0 -dimensional subschemes Z of X such that $H^{0}\left(X, \mathcal{O}_{Z}\right) \cong V_{\rho}$.

Let $\rho_{0}, \rho_{1}, \ldots, \rho_{n}$ be the irreducible representations of G. Assume that ρ_{0} is trivial. We take an α such that $\left(\alpha, v_{0}\right)=0$ and $\left(\alpha, \rho_{i}\right)<0$ for $i>0$.
Lemma 5.2.8. $M_{H}^{\rho_{\mathrm{reg}}, \alpha}\left(v_{0}\right)=G$-Hilb ${ }_{X}^{\rho_{\mathrm{reg}}}$. In particular, $M_{H}^{\rho_{\mathrm{reg}}, \alpha}\left(v_{0}\right) \neq \emptyset$.
Proof. Let E be a G-sheaf with $v(E)=v_{0}$. Since $\chi_{G}\left(\mathcal{O}_{X} \otimes \rho_{0}, E\right)=1$, we have a homomorphism $\phi: \mathcal{O}_{X} \otimes$ $\rho_{0} \rightarrow E$. Then $H^{0}(\operatorname{im} \phi)$ contains a trivial representation, which implies that $\chi_{G}\left(\mathcal{O}_{X} \otimes \rho_{0}, \operatorname{im} \phi\right) \geq 1$. We note that E belongs to $M_{H}^{\rho_{\text {reg }}, \alpha}\left(v_{0}\right)$ if and only if E does not contain a proper subsheaf F with $\chi_{G}\left(\mathcal{O}_{X} \otimes \rho_{0}, F\right) \geq 1$. Hence if $E \in M_{H}^{\rho_{\text {reg }}, \alpha}\left(v_{0}\right)$, then $\operatorname{im} \phi=E$, which implies that $E \in G$-Hilb ${ }_{X}^{\rho_{\text {reg }}}$. Conversely, if $E \in G$-Hilb ${ }_{X}^{\rho_{\text {reg }}}$, then for a subsheaf F with $\chi_{G}\left(\mathcal{O}_{X} \otimes \rho_{0}, F\right) \geq 1, \operatorname{Hom}_{G}\left(\mathcal{O}_{X} \otimes \rho_{0}, F\right) \rightarrow \operatorname{Hom}_{G}\left(\mathcal{O}_{X} \otimes \rho_{0}, E\right)$ is isomorphic. Hence ϕ factors through F. Since E is generated by the image of $\phi, F=E$. Thus E is stable.

We set $X^{\prime}:=M_{H}^{\rho_{\text {reg }}, \alpha}\left(v_{0}\right)$. Let Y^{\prime} be the normalization of $\bar{M}_{H}^{\rho_{\text {reg }, 0}}\left(v_{0}\right)$. Then we have a morphism $\pi: X^{\prime} \rightarrow Y^{\prime}$.
Proposition 5.2.9. (1) $Y^{\prime} \rightarrow \bar{M}_{H}^{\rho_{\text {reg }}, 0}\left(v_{0}\right)$ is a bijective morphism.
(2) Let $\left\{p_{1}, p_{2}, \ldots, p_{l}\right\}$ be the set of singular points of Y^{\prime}. Then each p_{i} corresponds to S-equivalence classes of properly v_{0}-twisted semi-stable G-sheaves. Let $\oplus_{j=0}^{s_{i}} E_{i j}^{\oplus a_{i j}}$ be the S-equivalence class corresponding to p_{i}. Then the matrix $\left(\chi_{G}\left(E_{i j}, E_{i j^{\prime}}\right)\right)_{j, j^{\prime} \geq 0}$ is of affine type $\tilde{A}, \tilde{D}, \tilde{E}$.
(3) We can assume that $a_{i 0}=1$ for all i. Then p_{i} is a rational double point of type A, D, E according as the type of the matrix $\left(\chi_{G}\left(E_{i j}, E_{i j^{\prime}}\right)\right)_{j, j^{\prime} \geq 1}$.
(4) We assume that $a_{i 0}=1$ for all i. For $j \neq 0$,

$$
\begin{equation*}
C_{i j}:=\left\{x^{\prime} \in X^{\prime} \mid \operatorname{Hom}_{G}\left(E_{i j}, \mathcal{E}_{\mid\left\{x^{\prime}\right\} \times X}\right) \neq 0\right\} \tag{5.18}
\end{equation*}
$$

is a smooth rational curve and $\pi^{-1}\left(p_{i}\right)=\sum_{j>0} a_{i j} C_{i j}$.
Proof. Since $H^{0}\left(X, \mathcal{O}_{\mathcal{Z}_{x^{\prime}}}\right) \cong \mathbb{C}[G], x^{\prime} \in X^{\prime}$, we have

$$
\begin{equation*}
\sum_{j} a_{i j} \chi_{G}\left(\mathcal{O}_{X} \otimes \rho_{0}, E_{i j}\right)=\chi_{G}\left(\mathcal{O}_{X} \otimes \rho_{0}, \oplus_{j} E_{i j}^{\oplus a_{i j}}\right)=1 \tag{5.19}
\end{equation*}
$$

Hence we may assume that $a_{i 0}=1$ and $H^{0}\left(X, E_{i j}\right)$ does not contain a trivial representation, if $j \neq 0$. In particular, $\chi_{G}\left(E_{i j} \otimes \alpha^{\vee}\right)<0$ for $j>0$. Then the proof is similar to the proof of Theorem 2.2.17 and Lemma 2.2.18
5.3. Fourier-Mukai transforms for G-sheaves. Let $\mathcal{E}:=\mathcal{O}_{\mathcal{Z}}$ be the universal family and we consider the Fourier-Mukai transform:

$$
\begin{array}{ccc}
\Phi: \quad \mathbf{D}_{G}(X) & \rightarrow & \mathbf{D}\left(X^{\prime}\right) \\
E & \mapsto & \mathbf{R} \pi_{X^{\prime} *}\left(\mathcal{E} \otimes \pi_{X}^{*}(E)\right)^{G} . \tag{5.20}
\end{array}
$$

Then

$$
\begin{array}{ccc}
\widehat{\Phi}: \quad \mathbf{D}\left(X^{\prime}\right) & \rightarrow & \mathbf{D}_{G}(X) \\
F & \mapsto & \mathbf{R} \pi_{X *}\left(\mathcal{E}^{\vee}[2] \otimes \pi_{X^{\prime}}^{*}(F)\right) \tag{5.21}
\end{array}
$$

is the quasi-inverse of Φ.
We note that $p_{X^{\prime} *}\left(\mathcal{O}_{\mathcal{Z}}\right)$ is a locally free sheaf on X^{\prime} with a G-action. We have a decomposition of $p_{X^{\prime} *}\left(\mathcal{O}_{\mathcal{Z}}\right)$ as G-sheaves:

$$
\begin{equation*}
p_{X^{\prime} *}\left(\mathcal{O}_{\mathcal{Z}}\right)=\oplus_{i} \Phi\left(\mathcal{O}_{X} \otimes \rho_{i}\right) \otimes \rho_{i}^{\vee} \tag{5.22}
\end{equation*}
$$

For a G-sheaf E of dimension $0, E^{\vee}=\mathcal{E} x t^{2}\left(E, \mathcal{O}_{X}\right)[-2]$. Hence E is an irreducible object if and only if $E^{\vee}[2]$ is an irreducible object.

Lemma 5.3.1. We set $F_{i j}:=E_{i j}^{\vee}[2] \in \operatorname{Coh}_{G}(X)$.
(1)

$$
\Phi\left(F_{i j}\right)=\left\{\begin{array}{l}
\mathcal{O}_{C_{i j}}(-1)[1], j>0 \tag{5.23}\\
\mathcal{O}_{Z_{i}}, j=0
\end{array}\right.
$$

where $Z_{i}:=\sum_{j} a_{i j} C_{i j}$ is the fundamental cycle of p_{i}.
(2) $\Phi\left(\mathcal{O}_{X} \otimes \rho_{i}\right)$ is a locally free sheaf of rank $\operatorname{dim} \rho_{i}$ on X^{\prime}. In particular, $\Phi\left(\mathcal{O}_{X} \otimes \rho_{0}\right)=\mathcal{O}_{X^{\prime}}$.
(3) $\Phi\left(\mathcal{O}_{X} \otimes \rho_{i}\right)$ is a full sheaf (E).

Proof. Let U be a G-invariant open subscheme of X. Then $D:=\operatorname{Supp}\left(p_{Y *}(\mathcal{Z} \cap(Y \times(X \backslash U)))\right)$ is a proper closed subset of Y and $\mathcal{Z}_{y} \subset U$ if and only if $y \in Y \backslash D$. If $K_{U}=\mathcal{O}_{U}$ as a G-sheaf, then we see that $K_{Y \backslash D}$ is trivial. Since X has an open covering of these properties, by the Grauert-Riemenschneider vanishing theorem, $\mathbf{R} \pi_{*}\left(\mathcal{O}_{X^{\prime}}\right)=\mathcal{O}_{Y^{\prime}}$. Outside of the fixed point loci of the G-action, $\widehat{\Phi}\left(\mathcal{O}_{X^{\prime}}\right)$ coincides with $\mathcal{O}_{X} \otimes \rho_{0}$. Hence $\bar{\Phi}\left(\mathcal{O}_{X^{\prime}}\right)=\mathcal{O}_{X} \otimes \rho_{0}$. Therefore $\Phi\left(\mathcal{O}_{X} \otimes \rho_{0}\right)=\mathcal{O}_{X^{\prime}} .(2)$ is a consequence of (5.22). Then the proof of (1) is similar to the Fourier-Mukai transform on a $K 3$ surface. (3) We note that

$$
\begin{align*}
\operatorname{Hom}\left(\Phi\left(\mathcal{O}_{X} \otimes \rho_{i}\right), \mathcal{O}_{C_{j k}}(-1)\right) & =\operatorname{Hom}\left(\Phi\left(\mathcal{O}_{X} \otimes \rho_{i}\right), \Phi\left(F_{j k}\right)[-1]\right) \\
& =\operatorname{Hom}_{G}\left(\mathcal{O}_{X} \otimes \rho_{i}, F_{j k}[-1]\right)=0, \\
\operatorname{Ext}^{1}\left(\Phi\left(\mathcal{O}_{X} \otimes \rho_{i}\right), \mathcal{O}_{Z_{j}}\right) & =\operatorname{Ext}^{1}\left(\Phi\left(\mathcal{O}_{X} \otimes \rho_{i}\right), \Phi\left(F_{j 0}\right)\right) \tag{5.24}\\
& =\operatorname{Ext}_{G}^{1}\left(\mathcal{O}_{X} \otimes \rho_{i}, F_{j 0}\right)=0 .
\end{align*}
$$

Hence $\Phi\left(\mathcal{O}_{X} \otimes \rho_{i}\right)$ is a full sheaf.
We have

$$
\begin{equation*}
\Phi\left(\mathcal{O}_{X} \otimes \rho_{i}\right)_{\mid C_{j k}} \cong \mathcal{O}_{C_{j k}}^{\oplus\left(\operatorname{dim} \rho_{i}-k_{i j k}\right)} \oplus \mathcal{O}_{C_{j k}}(1)^{\oplus k_{i j k}} \tag{5.25}
\end{equation*}
$$

where

$$
\begin{align*}
k_{i j k} & :=\left(c_{1}\left(\Phi\left(\mathcal{O}_{X} \otimes \rho_{i}\right)\right), C_{j k}\right) \\
& =\operatorname{dim} \operatorname{Ext}^{1}\left(\Phi\left(\mathcal{O}_{X} \otimes \rho_{i}\right), \Phi\left(F_{j k}\right)\right) \tag{5.26}\\
& =\operatorname{dim} \operatorname{Hom}_{G}\left(\mathcal{O}_{X} \otimes \rho_{i}, F_{j k}\right) .
\end{align*}
$$

Proposition 5.3.2. Φ induces an equivalence

$$
\begin{equation*}
\operatorname{Coh}_{G}(X) \rightarrow^{-1} \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right) . \tag{5.27}
\end{equation*}
$$

Proof. It is sufficient to prove $\Phi(E) \in{ }^{-1} \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ for $E \in \operatorname{Coh}_{G}(X)$. We first prove that $H^{i}(\Phi(E))=0$ for $i \neq-1,0$. Let E be a G-sheaf on X. Then there is an equivariant locally free resolution of E :

$$
\begin{equation*}
0 \rightarrow V_{-2} \rightarrow V_{-1} \rightarrow V_{0} \rightarrow E \rightarrow 0 . \tag{5.28}
\end{equation*}
$$

Since $\Phi\left(V_{i}\right)$ are locally free sheaves on X^{\prime} and

$$
\begin{equation*}
0 \rightarrow \Phi\left(V_{-2}\right) \rightarrow \Phi\left(V_{-1}\right) \rightarrow \Phi\left(V_{0}\right) \tag{5.29}
\end{equation*}
$$

is exact on $X^{\prime} \backslash \cup_{i} Z_{i}$, we get $H^{i}(\Phi(E))=0$ for $i \neq-1,0$ and $\operatorname{Supp}\left(H^{-1}(\Phi(E))\right) \subset \cup_{i} Z_{i}$. Then we have

$$
\begin{align*}
\operatorname{Hom}\left(H^{0}(\Phi(E)), \mathcal{O}_{C_{i j}}(-1)\right) & =\operatorname{Hom}\left(\Phi(E), \Phi\left(F_{i j}\right)[-1]\right) \\
& =\operatorname{Hom}_{G}\left(E, F_{i j}[-1]\right)=0, j>0, \\
\operatorname{Hom}\left(\mathcal{O}_{Z_{i}}, H^{-1}(\Phi(E))\right) & =\operatorname{Hom}\left(\Phi\left(F_{i 0}\right), \Phi(E)[-1]\right) \tag{5.30}\\
& =\operatorname{Hom}_{G}\left(F_{i 0}, E[-1]\right)=0 .
\end{align*}
$$

Hence $\Phi(E) \in{ }^{-1} \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$.
Remark 5.3.3. By the proof of Proposition 5.3.2 $H^{-1}(\Phi(E))=0$ if E does not contain a non-zero 0 dimensional sub G-sheaf.
Proposition 5.3.4. For $\alpha=\sum_{i} r_{i} \rho_{i}, r_{i}>0$, we set $P:=\bigoplus_{i} \Phi\left(\mathcal{O}_{X} \otimes \rho_{i}\right)^{\oplus r_{i}}$.
(1) P is a local projective generator of ${ }^{-1} \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$.
(2) A G-sheaf E is α-twisted stable if and only if $\Phi(E)$ is P-twisted stable.

Proof. Since

$$
\begin{equation*}
\chi\left(P, \Phi\left(F_{j k}\right)\right)=\sum_{i} r_{i} \chi_{G}\left(\mathcal{O}_{X} \otimes \rho_{i}, F_{j k}\right)=\sum_{i} r_{i}\left(\rho_{i}, H^{0}\left(X, F_{j k}\right)\right)>0 \tag{5.31}
\end{equation*}
$$

for all j, k, (1) holds by Lemma 5.3.1 (3). (2) is obvious.
Lemma 5.3.5. $\bar{M}_{H}^{v_{0}}\left(v_{0}\right) \cong Y^{\prime} \cong X / G$. In particular, $\bar{M}_{H}^{v_{0}}\left(v_{0}\right)$ is a normal surface with rational double points.
Proof. We shall first show that $\bar{M}_{H}^{v_{0}}\left(v_{0}\right) \cong Y^{\prime}$. By Proposition 5.3.4 $\bar{M}_{H}^{v_{0}}\left(v_{0}\right)$ is isomorphic to the moduli of 0 -dimensional objects E of ${ }^{-1} \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)$ with $v(E)=v\left(\mathbb{C}_{x}\right)$. By Lemma 2.2.12 we have the claim.

Let $\Delta \subset X \times X$ be the diagonal. Then $\mathcal{G}:=\oplus_{g \in G} \mathcal{O}_{(1 \times g)^{*}(\Delta)}$ is a G-equivariant coherent sheaf on $X \times X$ which is flat over X. Since $v\left(\mathcal{G}_{\{x\} \times X}\right)=v_{0}$, we have a morphism $\eta: X \rightarrow \bar{M}_{H}^{v_{0}}\left(v_{0}\right)$. We note that $\mathcal{G}_{\mid\{x\} \times X} \cong \mathcal{G}_{\mid\{g(x)\} \times X}$ for all $g \in G$ and $\mathcal{G}_{\mid\{x\} \times X} \cong \mathcal{G}_{\mid\{y\} \times X}$ if and only if $y \in G x$. Hence η is G-invariant and we get an injective morphism $X / G \rightarrow \bar{M}_{H}^{v_{0}}\left(v_{0}\right)$. It is easy to see that $X / G \rightarrow \bar{M}_{H}^{v_{0}}\left(v_{0}\right)$ is an isomorphism.

Corollary 5.3.6. We set $P:=\Phi\left(\mathcal{O}_{X} \otimes \mathbb{C}[G]\right)$ and $\mathcal{A}^{\prime}:=\pi_{*}\left(P^{\vee} \otimes P\right)$. Under the isomorphism $Y^{\prime} \cong Y$, we have an isomorphism $\pi_{*}(P) \cong \varpi_{*}\left(\mathcal{O}_{X}\right)$. Hence we have an isomorphism $\mathcal{A} \cong \mathcal{A}^{\prime}$ as $\mathcal{O}_{Y^{\prime}}$-algebras and we have the following commutative diagram.

Proof. We set $R:=\mathcal{O}_{X} \otimes \mathbb{C}[G]$. Since $\Phi\left(\mathcal{O}_{X} \otimes \mathbb{C}[G]\right) \cong \oplus_{i} \Phi\left(\mathcal{O}_{X} \otimes \rho_{i}\right)^{\oplus \operatorname{dim} \rho_{i}} \cong p_{X^{\prime} *}\left(\mathcal{O}_{\mathcal{Z}}\right), \pi_{*}(P) \cong$ $\pi_{*}\left(p_{X^{\prime} *}\left(\mathcal{O}_{\mathcal{Z}}\right)\right)$ is a reflexive sheaf. Since $\pi_{*}\left(p_{X^{\prime} *}\left(\mathcal{O}_{\mathcal{Z}}\right)\right)=\varpi_{*}\left(\mathcal{O}_{X}\right)$ on the smooth locus, we get an isomorphism $\pi_{*}(P) \cong \varpi_{*}\left(\mathcal{O}_{X}\right)$. Since \mathcal{A}^{\prime} is a reflexive sheaf on Y^{\prime}, we have $\mathcal{A}^{\prime} \cong \operatorname{End}_{\mathcal{O}_{Y^{\prime}}}\left(\pi_{*}(P)\right)$. Therefore $\mathcal{A}^{\prime} \cong \operatorname{End}_{\mathcal{O}_{Y^{\prime}}}\left(\pi_{*}(P)\right) \cong \operatorname{End}_{\mathcal{O}_{Y}}\left(\varpi_{*}\left(\mathcal{O}_{X}\right)\right) \cong \mathcal{A}$.

Since $\varpi_{*}(R)=\mathcal{A}$ and every G-sheaf E has a locally free resolution

$$
\begin{equation*}
\cdots \rightarrow R\left(-n_{-2}\right)^{\oplus N_{-2}} \rightarrow R\left(-n_{-1}\right)^{\oplus N_{-1}} \rightarrow R\left(-n_{0}\right)^{\oplus N_{0}} \rightarrow E \rightarrow 0 \tag{5.33}
\end{equation*}
$$

we get the commutative diagram.
Assume that X^{\prime} is a $K 3$ surface. For a primitive isotropic Mukai vector v_{0} on X^{\prime}, we set $X^{\prime \prime}:=M_{H}^{w}\left(v_{0}\right)$, where $v_{0}:=(r, \xi, a)$ is a primitive isotropic Mukai vector with $0<\left(\xi, C_{i j}\right)$ and $\left(\xi, \sum_{j} a_{i j} C_{i j}\right)<r$ for all i, j and $w \in K\left(X^{\prime}\right) \otimes \mathbb{Q}$ is sufficiently close to v_{0}. Assume that there is a universal family \mathcal{F} on $X^{\prime} \times X^{\prime \prime}$. Then $\mathcal{E}^{\prime}:=\widehat{\Phi}(\mathcal{F})$ is a flat family of stable G-sheaves and defines an equivalence $\Phi^{\prime}: \mathbf{D}^{G}(X) \rightarrow \mathbf{D}\left(X^{\prime \prime}\right)$ such that $\Phi^{\prime}=\Phi_{X^{\prime} \rightarrow X^{\prime \prime}}^{\mathcal{E}^{\prime}} \circ \Phi$.
5.4. Irreducible objects of $\operatorname{Coh}_{G}(X)$. We shall study irreducible objects of $\operatorname{Coh}_{G}(X)$. Let E be a G-sheaf of dimension 0 . We may assume that $\operatorname{Supp}(E)=G x$. Let H be the stabilizer of x and E_{x} the submodule of E whose support is x. Then E_{x} is a H-sheaf. We have a decomposition $H^{0}(X, E)=\oplus_{y \in G x} H^{0}\left(X, E_{y}\right)$. Since $g H^{0}\left(X, E_{x}\right)=H^{0}\left(X, E_{g x}\right)$, we have an isomorphism

$$
\begin{equation*}
H^{0}(X, E) \cong \mathbb{C}[G] \otimes_{\mathbb{C}[H]} H^{0}\left(X, E_{x}\right) \tag{5.34}
\end{equation*}
$$

as G-modules. Then we have an equality of invariant subspaces:

$$
\begin{equation*}
H^{0}(X, E)^{G}=H^{0}\left(X, E_{x}\right)^{H} \tag{5.35}
\end{equation*}
$$

We shall prove that there is a bijection between
(a) $\mathfrak{G}:=\left\{E \in \operatorname{Coh}_{G}(X) \mid \operatorname{Supp}(E)=G x, \operatorname{Stab}(x)=H\right\}$ and
(b) $\mathfrak{H}:=\left\{F \in \operatorname{Coh}_{H}(X) \mid \operatorname{Supp}(F)=x\right\}$.

We define $r: \mathfrak{G} \rightarrow \mathfrak{H}$ by sending $E \in \mathfrak{G}$ to $E_{x} \in \mathfrak{H}$. For $F \in \mathfrak{H}$, we set $K:=\operatorname{ker}\left(H^{0}(X, F) \otimes \mathcal{O}_{X} \rightarrow F\right)$. Then

$$
\begin{equation*}
s(F):=\left(\mathbb{C}[G] \otimes_{\mathbb{C}[H]} H^{0}(X, F)\right) \otimes \mathcal{O}_{X} / \sum_{g \in G} g(K) \tag{5.36}
\end{equation*}
$$

is a G-sheaf such that $s(F)_{x}=F$. Hence we have a map $s: \mathfrak{H} \rightarrow \mathfrak{G}$ with $r \circ s=\operatorname{id}_{\mathfrak{H}}$. For $E \in \mathfrak{G}$, we also see that $s\left(E_{x}\right) \cong E$, and hence $s \circ r=\operatorname{id}_{\mathfrak{G}}$. Therefore our claim holds.

If $H^{0}(X, F)$ is the regular representation of H, i.e., $H^{0}(X, F) \cong \mathbb{C}[H]$, then $H^{0}(X, E)$ is the regular representation of G. Then we see that E is irreducible in $\operatorname{Coh}_{G}(X)$ if and only if E_{x} is irreducible in $\operatorname{Coh}_{H}(X)$. Since $\operatorname{Supp}\left(E_{x}\right)$ is one point, it means that $H^{0}\left(X, E_{x}\right)$ is an irreducible representation of H and $E_{x} \cong H^{0}\left(X, E_{x}\right) \otimes \mathbb{C}_{x}$.
Lemma 5.4.1. Each singular point $\bigoplus_{j} E_{i j}^{\oplus a_{i j}} \in \bar{M}_{H}^{v_{0}}\left(v_{0}\right)$ corresponds to an orbit $G x_{i}$ with $\operatorname{Stab}\left(x_{i}\right) \neq\{e\}$ and $\left(E_{i j}\right)_{x_{i}}=\rho_{i j} \otimes \mathbb{C}_{x_{i}}$, where $\rho_{i j}$ are irreducible representations of $\operatorname{Stab}\left(x_{i}\right)$. Moreover

$$
\begin{equation*}
\chi_{G}\left(E_{i j}, E_{i j^{\prime}}\right)=\chi_{\operatorname{Stab}\left(x_{i}\right)}\left(\rho_{i j} \otimes \mathbb{C}_{x}, \rho_{i j^{\prime}} \otimes \mathbb{C}_{x}\right) \tag{5.37}
\end{equation*}
$$

Proof. If $\operatorname{Supp}\left(E_{i j}\right) \neq \operatorname{Supp}\left(E_{i^{\prime} j^{\prime}}\right)$, then $\chi\left(E_{i j}, E_{i^{\prime} j^{\prime}}\right)=0$. Hence $\operatorname{Supp}\left(E_{i j}\right)=\operatorname{Supp}\left(E_{i j^{\prime}}\right)$ for all j, j^{\prime}. Hence there is a point x_{i} such that $G x_{i}=\operatorname{Supp}\left(E_{i j}\right)$ for all j. Then the first part of the claim follows.

For the second claim, we note that $\chi_{\operatorname{Stab}\left(x_{i}\right)}\left(\left(\oplus_{g \in G / \operatorname{Stab}\left(x_{i}\right)} \rho_{i j} \otimes \mathbb{C}_{g x_{i}}\right) / \rho_{i j} \otimes \mathbb{C}_{x_{i}}, \rho_{i j^{\prime}} \otimes \mathbb{C}_{x_{i}}\right)=0$. By using an equivariant locally free resolution of $E_{i j}$ and (5.35), we see that

$$
\begin{align*}
\chi_{G}\left(E_{i j}, E_{i j^{\prime}}\right) & =\chi_{\operatorname{Stab}\left(x_{i}\right)}\left(E_{i j},\left(E_{i j^{\prime}}\right)_{x_{i}}\right) \\
& =\chi_{\operatorname{Stab}\left(x_{i}\right)}\left(\left(E_{i j}\right)_{x_{i}},\left(E_{i j^{\prime}}\right)_{x_{i}}\right) . \tag{5.38}
\end{align*}
$$

Example 5.4.2. Let X be an abelian surface. Then $G=\mathbb{Z}_{2}$ acts on X as the multiplication by (-1). Then the moduli of stable G-sheaves on X is isomorphic to the moduli space of stable objects of ${ }^{-1} \operatorname{Per}(\operatorname{Km}(X) / Y)$, where $Y=X / G$ and $\operatorname{Km}(X) \rightarrow Y$ is the Kummer surface associated to X.

6. Appendix

6.1. Elementary facts on lattices.

Lemma 6.1.1. Assume that $L \cong \mathbb{Z}^{n}$ has an integral bilinear form (,). Let v be a primitive elenent of L such that $(v, v)=0,(v, w)=(w, v)$ for any w. We set $v^{\perp}:=\{x \in L \mid(v, x)=0\}$. Assume that (,) ${|r| v^{\perp}}^{\text {is }}$ symmetric and there is an element $u \in L \otimes \mathbb{Q}$ such that $(u, v)=0$ and $\left(v^{\perp} \cap u^{\perp}\right) / \mathbb{Z} v$ is negative definite.
(1) If $v=\sum_{i=0}^{s} a_{i} v_{i}, a_{i} \in \mathbb{Z}_{>0}$ such that $v_{i} \in v^{\perp} \cap u^{\perp}, \underset{\sim}{i}=0,1, \ldots, s,\left(v_{i}^{2}\right)=-2$ and $\left(v_{i}, v_{j}\right) \geq 0$ for $i \neq j$. Then the matrix $\left(-\left(v_{i}, v_{j}\right)_{i, j}\right)$ is of affine type $\widetilde{A}, \widetilde{D}, \widetilde{E}$.
(2) If v has two expressions

$$
\begin{equation*}
v=\sum_{i=0}^{s} a_{i} v_{i}=\sum_{i=0}^{t} a_{i}^{\prime} v_{i}^{\prime}, a_{i}, a_{i}^{\prime} \in \mathbb{Z}_{>0} \tag{6.1}
\end{equation*}
$$

such that $v_{i}, v_{i}^{\prime} \in v^{\perp} \cap u^{\perp},\left(v_{i}^{2}\right)=\left(\left(v_{i}^{\prime}\right)^{2}\right)=-2$ and $\left(w_{1}, w_{2}\right) \geq 0$ for different $w_{1}, w_{2} \in V_{1} \cup V_{2}$, where $V_{1}:=\left\{v_{0}, v_{1}, \ldots, v_{s}\right\}$ and $V_{2}:=\left\{v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{t}^{\prime}\right\}$. Then $V_{1}=V_{2}$ or $\oplus_{i} \mathbb{Z} v_{i} \perp \oplus_{i} \mathbb{Z} v_{i}^{\prime}$.

Proof. (1) We first note that $v_{0}, v_{1}, \ldots, v_{s}$ are linearly independent over \mathbb{Q}. We shall show that the dual graph of $\left\{v_{0}, v_{1}, \ldots, v_{s}\right\}$ is connected. If we have a decomposition $v=\left(\sum_{i \in I_{1}} a_{i} v_{i}\right)+\left(\sum_{i \in I_{2}} a_{i} v_{i}\right)$ such that $\left(v_{i}, v_{j}\right)=0$ for $i \in I_{1}, j \in I_{2}$, then $0=\left(v^{2}\right)=\left(\sum_{i \in I_{1}} a_{i} v_{i}\right)^{2}+\left(\sum_{i \in I_{2}} a_{i} v_{i}\right)^{2}$. Hence $\sum_{i \in I_{1}} a_{i} v_{i}, \sum_{i \in I_{2}} a_{i} v_{i} \in$ $\mathbb{Z} v$, which implies that the graph is connected. Then the standard arguments show the claim.
(2) $I:=\left\{i \mid v_{i}^{\prime} \in V_{1}\right\}$ and $J:=\left\{i \mid v_{i}^{\prime} \notin V_{1}\right\}$. Then $v=\left(\sum_{i \in I} a_{i}^{\prime} v_{i}^{\prime}\right)+\left(\sum_{i \in J} a_{i}^{\prime} v_{i}^{\prime}\right)$. If $i \in J$, then $0=\left(v_{i}, v\right)=\sum_{j} a_{j}\left(v_{i}^{\prime}, v_{j}\right) \geq 0$. Hence $v_{i}^{\prime} \in\left(\oplus_{i} \mathbb{Z} v_{i}\right)^{\perp}$. Then $0=\left(v^{2}\right)=\left(\left(\sum_{i \in I} a_{i}^{\prime} v_{i}^{\prime}\right)^{2}\right)+\left(\left(\sum_{i \in J} a_{i}^{\prime} v_{i}^{\prime}\right)^{2}\right)$. Hence $\sum_{i \in I} a_{i}^{\prime} v_{i}^{\prime}, \sum_{i \in J} a_{i}^{\prime} v_{i}^{\prime} \in \mathbb{Z} v$, which implies that $I=\emptyset$ or $J=\emptyset$. If $J=\emptyset$, then $V_{2} \subset V_{1}$, and we see that $V_{1}=V_{2}$. If $I=\emptyset$, then all v_{i}^{\prime} belong to $\oplus_{i} \mathbb{Z} v_{i}$. Thus $\oplus_{i} \mathbb{Z} v_{i} \perp \oplus_{i} \mathbb{Z} v_{i}^{\prime}$.

Example 6.1.2. Let X be s smooth projective surface and H a divisor on X with $\left(H^{2}\right)>0$. We set $L:=$ $\operatorname{ch}(K(X))$ and $(x, y):=-\int_{X} x^{\vee} y \operatorname{td}_{X}, x, y \in L$. Then $\varrho_{X}=\operatorname{ch}\left(\mathbb{C}_{x}\right)$ is primitive in L. Since $\mathbb{C}_{x} \otimes K_{X} \cong \mathbb{C}_{x}$, $\left(\varrho_{X}, x\right)=\left(x, \varrho_{X}\right)$. Moreover $(,)_{\varrho_{X}^{\perp}}$ is symmetric. Since $\left(\varrho_{X}^{\perp} \cap \operatorname{ch}\left(\mathcal{O}_{H}\right)^{\perp}\right) / \mathbb{Z} \varrho_{X} \cong\left\{D \in \operatorname{NS}(X)_{f} \mid(H, D)=\right.$ $0\}$, it is negative definite, where $\operatorname{NS}(X)_{f}$ is the torsion free quotient of $\operatorname{NS}(X)$.
6.2. Existence of twisted semi-stable sheaves. Let X be a smooth projective surface and H an ample divisor on X. Let $\mathbf{e} \in K(X)_{\text {top }}$ be a toplogical invariant of a coherent sheaf on X.

Definition 6.2.1. A polarization H on X is general with respect to \mathbf{e}, if for every μ-semi-stable sheaf E with $\tau(E)=\mathbf{e}$ and a subsheaf $F \neq 0$ of E,

$$
\begin{equation*}
\frac{\left(c_{1}(F), H\right)}{\operatorname{rk} F}=\frac{\left(c_{1}(E), H\right)}{\operatorname{rk} E} \text { if and only if } \frac{c_{1}(F)}{\operatorname{rk} F}=\frac{c_{1}(E)}{\operatorname{rk} E} \tag{6.2}
\end{equation*}
$$

If H is general with respect to \mathbf{e}, then the G-twisted semi-stability does not depend on the choice of G. The following is M-W, Lem. 3.6]. For convenience'sake, we give a proof.

Lemma 6.2.2. Assume that H is not general with respect to \mathbf{e} and let ϵ be a sufficiently small \mathbb{Q}-divisor such that $H+\epsilon$ is general with respect to \mathbf{e}. Then there is a locally free sheaf G such that $\mathcal{M}_{H}^{G}(\mathbf{e})^{s s}=\mathcal{M}_{H+\epsilon}(\mathbf{e})^{s s}$.
Proof. We set

$$
\mathcal{F}(\mathbf{e}):=\left\{\begin{array}{l|l}
F \subset E & \begin{array}{c}
E \in \mathcal{M}_{H}(\mathbf{e})^{\mu-s s}, E / F \text { is torsion free } \\
\left(c_{1}(F), H\right) / \mathrm{rk} F=\left(c_{1}(E), H\right) / \mathrm{rk} E
\end{array} \tag{6.3}
\end{array}\right\}
$$

Since $\mathcal{F}(\mathbf{e})$ is a bounded set, we have

$$
\begin{equation*}
B:=\max \left\{\left.\left|\frac{\chi(E)}{\mathrm{rk} E}-\frac{\chi(F)}{\mathrm{rk} F}\right| \right\rvert\,(F \subset E) \in \mathcal{F}(\mathbf{e})\right\}<\infty \tag{6.4}
\end{equation*}
$$

Assume that $N \epsilon \in \mathrm{NS}(X)$. Let G be a locally free sheaf such that $c_{1}(G) / \mathrm{rk} G=-m \epsilon$. If $m \geq(\mathrm{rk} \mathbf{e})^{2} N B$, then for $(F \subset E) \in \mathcal{F}(\mathbf{e})$,

$$
\begin{equation*}
\frac{\chi(G, E(n H))}{\operatorname{rk} E}-\frac{\chi(G, F(n H))}{\operatorname{rk} F}=m\left(\frac{c_{1}(E)}{\operatorname{rk} E}-\frac{c_{1}(F)}{\operatorname{rk} F}, \epsilon\right)+\frac{\chi(E)}{\operatorname{rk} E}-\frac{\chi(F)}{\operatorname{rk} F} \geq 0 \tag{6.5}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\left(\frac{c_{1}(E)}{\operatorname{rk} E}-\frac{c_{1}(F)}{\operatorname{rk} F}, \epsilon\right) \geq 0 \tag{1}
\end{equation*}
$$

or
(2)

$$
\begin{equation*}
\frac{c_{1}(E)}{\mathrm{rk} E}-\frac{c_{1}(F)}{\operatorname{rk} F}=0, \frac{\chi(E)}{\mathrm{rk} E}-\frac{\chi(F)}{\mathrm{rk} F} \geq 0 \tag{6.7}
\end{equation*}
$$

which is the semi-stability of E with respect to $H+\epsilon$. Therefore the claim holds.
Lemma 6.2.3. Let (X, H) be a polarized $K 3$ surface and $v=r+\xi+a \varrho_{X}, \xi \in \operatorname{NS}(X)$ a primitive Mukai vector with $\left\langle v^{2}\right\rangle \geq-2$. Then there is a G-twisted semi-stable sheaf E with $v(E)=v$ for any G.

Proof. If H is general with respect to v, then there is a stable sheaf E with $v(E)=v$ by Y1, Thm. 8.1] and [Y5. By Lemma 6.2.2, there is a locally free sheaf G_{1} such that $\mathcal{M}_{H}^{G_{1}}(v)^{s s}=\mathcal{M}_{H}^{G_{1}}(v)^{s} \neq \emptyset$. For a G with $\mathcal{M}_{H}^{G}(v)^{s s}=\mathcal{M}_{H}^{G}(v)^{s}$, we use Y2, Prop. 4.1]. If $\mathcal{M}_{H}^{G}(v)^{s s} \neq \mathcal{M}_{H}^{G}(v)^{s}$, then we can find a G^{\prime} such that $c_{1}\left(G^{\prime}\right) / \operatorname{rk} G^{\prime}$ is sufficiently close to $c_{1}(G) / \operatorname{rk} G, \mathcal{M}_{H}^{G^{\prime}}(v)^{s s}=\mathcal{M}_{H}^{G^{\prime}}(v)^{s} \neq \emptyset$ and $\mathcal{M}_{H}^{G^{\prime}}(v)^{s s} \subset \mathcal{M}_{H}^{G}(v)^{s s}$. Thus the claim also holds.
6.3. Spectral sequences. Since $\widehat{\Phi}[2]$ and $\widehat{\Psi}$ are the inverses of Φ and Ψ respectively, we get the followng.

Lemma 6.3.1. We have spectral sequences

$$
\begin{gather*}
E_{2}^{p, q}=\Phi^{p}\left(\widehat{\Phi}^{q}(E)\right) \Rightarrow E_{\infty}^{p+q}=\left\{\begin{array}{ll}
E, & p+q=2, \\
0, & p+q \neq 2,
\end{array} \quad E \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right),\right. \tag{6.8}\\
E_{2}^{p, q}=\widehat{\Phi}^{p}\left(\Phi^{q}(F)\right) \Rightarrow E_{\infty}^{p+q}=\left\{\begin{array}{ll}
F, & p+q=2 \\
0, & p+q \neq 2,
\end{array} \quad F \in \mathcal{C} .\right. \tag{6.9}
\end{gather*}
$$

In particular,
(i) $\Phi^{p}\left(\widehat{\Phi}^{q}(E)\right)=0, p=0,1$.
(ii) $\Phi^{p}\left(\widehat{\Phi}^{q}(E)\right)=0, p=1,2$.
(iii) There is an injective homomorphism $\Phi^{0}\left(\widehat{\Phi}^{1}(E)\right) \rightarrow \Phi^{2}\left(\widehat{\Phi}^{0}(E)\right)$.
(iv) There is a surjective homomorphism $\Phi^{0}\left(\widehat{\Phi}^{2}(E)\right) \rightarrow \Phi^{2}\left(\widehat{\Phi}^{1}(E)\right)$.

Lemma 6.3.2. We have spectral sequences

$$
\begin{gather*}
E_{2}^{p, q}=\Psi^{p}\left(\widehat{\Psi}^{-q}(E)\right) \Rightarrow E_{\infty}^{p+q}=\left\{\begin{array}{ll}
E, & p-q=0, \\
0, & p-q \neq 0,
\end{array} \quad E \in \operatorname{Per}\left(X^{\prime} / Y^{\prime}\right)^{D},\right. \tag{6.10}\\
E_{2}^{p, q}=\widehat{\Psi}^{p}\left(\Psi^{-q}(F)\right) \Rightarrow E_{\infty}^{p+q}=\left\{\begin{array}{ll}
F, & p-q=0, \\
0, & p-q \neq 0,
\end{array} \quad F \in \mathcal{C}\right. \tag{6.11}
\end{gather*}
$$

In particular,
(i) $\Psi^{p}\left(\widehat{\Psi}^{2}(E)\right)=0, p=0,1$.
(ii) $\Psi^{p}\left(\widehat{\Psi}^{0}(E)\right)=0, p=1,2$.
(iii) There is an injective homomorphism $\Psi^{0}\left(\widehat{\Psi}^{1}(E)\right) \rightarrow \Psi^{2}\left(\widehat{\Psi}^{2}(E)\right)$.
(iv) There is a surjective homomorphism $\Psi^{0}\left(\widehat{\Psi}^{0}(E)\right) \rightarrow \Psi^{2}\left(\widehat{\Psi}^{1}(E)\right)$.

For a convenience of the reader, we give a proof of Lemma 6.3.2,
Proof. By the exact triangles

$$
\begin{equation*}
\Psi^{\leq 1}(E)[-1] \rightarrow \Psi(E) \rightarrow \Psi^{2}(E)[-2] \rightarrow \Psi^{\leq 1}(E) \tag{6.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi^{0}(E) \rightarrow \Psi^{\leq 1}(E)[-1] \rightarrow \Psi^{1}(E)[-1] \rightarrow \Psi^{0}(E)[1] \tag{6.13}
\end{equation*}
$$

we have exact triangles

$$
\begin{equation*}
\widehat{\Psi}\left(\Psi^{\leq 1}(E)\right)[1] \leftarrow \widehat{\Psi}(\Psi(E)) \leftarrow \widehat{\Psi}\left(\Psi^{2}(E)\right)[2] \leftarrow \widehat{\Psi}\left(\Psi^{\leq 1}(E)\right) \tag{6.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{\Psi}\left(\Psi^{0}(E)\right) \leftarrow \widehat{\Psi}\left(\Psi^{\leq 1}(E)\right)[1] \leftarrow \widehat{\Psi}\left(\Psi^{1}(E)\right)[1] \leftarrow \widehat{\Psi}\left(\Psi^{0}(E)\right)[-1] \tag{6.15}
\end{equation*}
$$

Since $\widehat{\Psi}(\Psi(E))=E$, we have exact sequences

$$
\begin{array}{r}
0 \leftarrow \widehat{\Psi}^{1}\left(\Psi^{\leq 1}(E)\right) \leftarrow E \leftarrow \widehat{\Psi}^{2}\left(\Psi^{2}(E)\right) \leftarrow \widehat{\Psi}^{0}\left(\Psi^{\leq 1}(E)\right) \leftarrow 0, \\
\widehat{\Psi}^{2}\left(\Psi^{\leq 1}(E)\right)=\widehat{\Psi}^{1}\left(\Psi^{2}(E)\right)=\widehat{\Psi}^{0}\left(\Psi^{2}(E)\right)=0, \\
0 \leftarrow \widehat{\Psi}^{2}\left(\Psi^{1}(E)\right) \leftarrow \widehat{\Psi}^{0}\left(\Psi^{0}(E)\right) \leftarrow \widehat{\Psi}^{1}\left(\Psi^{\leq 1}(E)\right) \leftarrow \widehat{\Psi}^{1}\left(\Psi^{1}(E)\right) \leftarrow 0, \tag{6.16}\\
\widehat{\Psi}^{0}(\Psi \leq 1(E)) \cong \widehat{\Psi}^{0}\left(\Psi^{1}(E)\right), \\
\widehat{\Psi}^{1}\left(\Psi^{0}(E)\right)=\widehat{\Psi}^{2}\left(\Psi^{0}(E)\right)=0 .
\end{array}
$$

These give the data of the spectral sequence.
Acknowledgement. I would like to thank Max Planck Institute für Mathematik very much for the hospitarity and support. I would also like to thank Hiraku Nakajima for valuable discussions on perverse coherent sheaves. Finally I would like to thank Shintaro Yanagida for reading this manuscript and giving some comments.

References

[BBH] Bartocci, C., Bruzzo, U., Hernández Ruipérez, D., A Fourier-Mukai transform for stable bundles on K3 surfaces, J. Reine Angew. Math. 486 (1997), 1-16
[B-S] Borel, A., Serre, J. P., Le théorème de Riemann-Roch, Bull. Soc. Math. France 86 (1958), 97-136
[Br1] Bridgeland, T., Fourier-Mukai transforms for elliptic surfaces, J. reine angew. Math. 498 (1998), 115-133
[Br2] Bridgeland, T., Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. London Math. Soc. 31 (1999), 25-34, math.AG/9809114
[Br3] Bridgeland, T., Flops and derived categories, Invent. Math. 147 (2002), 613-632.
[Br4] Bridgeland, T., Stability conditions on K3 surfaces, math.AG/0307164 Duke Math. J. 141 (2008), 241-291
[E] Esnault, H., Reflexive modules on quotient surface singularities, J. Reine Angew. Math. 362 (1985), 63-71
[F1] Fogarty, J., Algebraic families on an algebraic surface, Amer. J. Math 90 (1968) 511-521
[F2] Fogarty, J., Truncated Hilbert functors, J. Reine Angew. Math. 234 (1969) 65-88
[Hr] Hartmann, H., Cusps of the Kähler moduli space and stability conditions on K3 surfaces, arXiv:1012.3121
[H] Huybrechts, D., Derived and abelian equivalence of K3 surfaces, math.AG/0604150. J. Algebraic Geom. 17 (2008), 375-400
[In] Inaba, M., Moduli of stable objects in a triangulated category, arXiv:math/0612078, J. Math. Soc. Japan 62 (2010), 395-429
[Is1] Ishii, A., On the moduli of reflexive sheaves on a surface with rational double points, Math. Ann. 294 (1992), 125-150
[Is2] Ishii, A., Versal deformation of reflexive modules over rational double points, Math. Ann. 317 (2000), 239-262
[K] King, A., Moduli of representations of finite dimensional algebras, Quarterly J. of Math. 45 (1994), 515-530.
[M-W] Matsuki, K. and Wentworth, R. Mumford-Thaddeus principle on the moduli space of vector bundles on an algebraic surface, Internat. J. Math. 8 (1997), 97-148
[MYY] Minamide, H., Yanagida, S., Yoshioka, K., Fourier-Mukai transforms and the wall-crossing behavior for Bridgeland's stability conditions, arXiv:1106.5217
[Mu1] Mukai, S., Duality between $D(X)$ and $D(\hat{X})$ with its application to Picard sheaves, Nagoya Math. J., 81 (1981), 153-175
[Mu2] Mukai, S., On the moduli space of bundles on K3 surfaces I, Vector bundles on Algebraic Varieties, Oxford, 1987, 341-413
[Mu3] Mukai, S., Duality of polarized K3 surfaces, New trends in algebraic geometry (Warwick, 1996), 311-326, London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge, 1999
[NN] Nagao, K., Nakajima, H., Counting invariant of perverse coherent sheaves and its wall-crossing, arXiv:0809.2992
[N1] Nakajima, H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416
[N2] Nakajima, H., Sheaves on ALE spaces and quiver varieties, Moscow Math. Journal, 7 (2007), No. 4, 699-722
[NY1] Nakajima, H., Yoshioka, K., Perverse coherent sheaves on blow-up. I. A quiver description, preprint, arXiv:0802.3120 Adv. Stud. Pure Math. to appear
[NY2] Nakajima, H., Yoshioka, K., Perverse coherent sheaves on blow-up. II. wall-crossing and Betti numbers formula, arXiv:0806.0463 J. Algebraic Geom. 20 (2011), 47-100
[O] Orlov, D., Equivalences of derived categories and K3 surfaces, alg-geom/9606006, Algebraic geometry, 7. J. Math. Sci. (New York) 84 (1997), no. 5, 1361-1381.
[O-Y] Onishi, N., Yoshioka, K., Singularities on the 2-dimensional moduli spaces of stable sheaves on K 3 surfaces, math.AG/0208241. Internat. J. Math. 14 (2003), 837-864
[S-T] Seidel, P., Thomas, R. P., Braid group actions on derived categories of coherent sheaves, Duke Math. Jour. 108 (2001), 37-108
[S] Simpson, C., Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. I.H.E.S. 79 (1994), 47-129
[T] Toda, Y., Hilbert schemes of points via McKay correspondences, arXiv:math/0508555v1.
[VB] Van den Bergh, M., Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no. 3, $423-455$.
[Y1] Yoshioka, K., Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001), 817-884, math.AG/0009001
[Y2]
Yoshioka, K., Twisted stability and Fourier-Mukai transform I, Compositio Math. 138 (2003), 261-288,
[Y3] Yoshioka, K., Twisted stability and Fourier-Mukai transform II, Manuscripta Math. 110 (2003), 433-465
[Y4] Yoshioka, K., Moduli of twisted sheaves on a projective variety, math.AG/0411538. Adv. Stud. Pure Math. 45 (2006), 1-30
[Y5] Yoshioka, K., Stability and the Fourier-Mukai transform II, Compositio Math. 145 (2009), 112-142
[Y6] Yoshioka, K., An action of a Lie algebra on the homology groups of moduli spaces of stable sheaves, arXiv:math/0605163, Adv. Stud. Pure Math. 58 (2010), 403-459

Department of Mathematics, Faculty of Science, Kobe University, Kobe, 657, Japan
E-mail address: yoshioka@math.kobe-u.ac.jp

[^0]: 1991 Mathematics Subject Classification. 14D20.
 The author is supported by the Grant-in-aid for Scientific Research (No. 18340010, No. 22340010), JSPS.

